Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (10): 3091-3100.doi: 10.12382/bgxb.2022.0498
Previous Articles Next Articles
LI Ziming, LIU Zhenming*(), LIU Jingbin, CHEN Ping
Received:
2022-06-07
Online:
2023-10-30
Contact:
LIU Zhenming
CLC Number:
LI Ziming, LIU Zhenming, LIU Jingbin, CHEN Ping. Model Comparison of Fuel Cavitation Phenomena in Microchannels of Marine Diesel Engines[J]. Acta Armamentarii, 2023, 44(10): 3091-3100.
Add to citation manager EndNote|Ris|BibTeX
热物性参数 | 数值 |
---|---|
液相密度/(kg·m-3) | 830 |
液相动力黏度/(kg·m-1·s-1) | 0.0024 |
饱和蒸气压/Pa | 2000 |
气相密度/(kg·m-3) | 0.029 |
气相动力黏度/(10-6kg·m-1·s-1) | 3.1×10-6 |
Table 1 Fuel thermophysical properties[17]
热物性参数 | 数值 |
---|---|
液相密度/(kg·m-3) | 830 |
液相动力黏度/(kg·m-1·s-1) | 0.0024 |
饱和蒸气压/Pa | 2000 |
气相密度/(kg·m-3) | 0.029 |
气相动力黏度/(10-6kg·m-1·s-1) | 3.1×10-6 |
试验和模型 | 区段/mm | |||
---|---|---|---|---|
-1.00~ -0.25 | -0.25~ 0.22 | 0.22~ 0.50 | 0.50~ 2.00 | |
Winklhofer等[ | 95.51 | 63.68 | 37.00 | 28.33 |
SST k-ω+ZGB模型 | 97.94 | 62.26 | 31.40 | 33.60 |
SST k-ω+SS模型 | 97.29 | 64.00 | 32.23 | 29.21 |
Realizable k-ε+ZGB模型 | 97.54 | 64.18 | 32.77 | 32.44 |
Realizable k-ε+SS模型 | 97.67 | 64.99 | 33.00 | 28.96 |
RNG k-ε+ZGB模型 | 97.78 | 66.33 | 34.90 | 29.31 |
RNG k-ε+SS模型 | 97.74 | 67.98 | 36.73 | 29.61 |
Table 2 Comparison of average pressure gradient resultsbar
试验和模型 | 区段/mm | |||
---|---|---|---|---|
-1.00~ -0.25 | -0.25~ 0.22 | 0.22~ 0.50 | 0.50~ 2.00 | |
Winklhofer等[ | 95.51 | 63.68 | 37.00 | 28.33 |
SST k-ω+ZGB模型 | 97.94 | 62.26 | 31.40 | 33.60 |
SST k-ω+SS模型 | 97.29 | 64.00 | 32.23 | 29.21 |
Realizable k-ε+ZGB模型 | 97.54 | 64.18 | 32.77 | 32.44 |
Realizable k-ε+SS模型 | 97.67 | 64.99 | 33.00 | 28.96 |
RNG k-ε+ZGB模型 | 97.78 | 66.33 | 34.90 | 29.31 |
RNG k-ε+SS模型 | 97.74 | 67.98 | 36.73 | 29.61 |
试验和模型 | 区段/bar | |
---|---|---|
19~70 | 70~85 | |
Winklhofer等[ | 6.89 | 7.78 |
SST k-ω+ZGB模型 | 7.10 | 8.19 |
SST k-ω+SS模型 | 7.15 | 8.43 |
Realizable k-ε+ZGB模型 | 6.93 | 8.03 |
Realizable k-ε+SS模型 | 6.96 | 8.19 |
RNG k-ε+ZGB模型 | 6.86 | 8.03 |
RNG k-ε+SS模型 | 6.93 | 8.15 |
Table 4 Comparison of average pressure gradient resultsg/s
试验和模型 | 区段/bar | |
---|---|---|
19~70 | 70~85 | |
Winklhofer等[ | 6.89 | 7.78 |
SST k-ω+ZGB模型 | 7.10 | 8.19 |
SST k-ω+SS模型 | 7.15 | 8.43 |
Realizable k-ε+ZGB模型 | 6.93 | 8.03 |
Realizable k-ε+SS模型 | 6.96 | 8.19 |
RNG k-ε+ZGB模型 | 6.86 | 8.03 |
RNG k-ε+SS模型 | 6.93 | 8.15 |
试验和模型 | 区段/μm | |||
---|---|---|---|---|
0~ 48 | 48~ 150 | 150~ 266 | 266~ 300 | |
Winklhofer等[ | 54.32 | 96.36 | 95.35 | 91.74 |
SST k-ω+ZGB模型 | 75.11 | 107.94 | 109.91 | 63.66 |
SST k-ω+SS模型 | 85.70 | 104.08 | 106.47 | 77.13 |
Realizable k-ε+ZGB模型 | 77.76 | 104.09 | 106.75 | 62.07 |
Realizable k-ε+SS模型 | 81.18 | 101.10 | 103.21 | 69.04 |
RNG k-ε+ZGB模型 | 76.65 | 98.22 | 100.95 | 62.72 |
RNG k-ε+SS模型 | 76.11 | 97.64 | 99.41 | 68.37 |
Table 5 Comparison of average flow rate results of section x1 at 55 bar differential pressure m/s
试验和模型 | 区段/μm | |||
---|---|---|---|---|
0~ 48 | 48~ 150 | 150~ 266 | 266~ 300 | |
Winklhofer等[ | 54.32 | 96.36 | 95.35 | 91.74 |
SST k-ω+ZGB模型 | 75.11 | 107.94 | 109.91 | 63.66 |
SST k-ω+SS模型 | 85.70 | 104.08 | 106.47 | 77.13 |
Realizable k-ε+ZGB模型 | 77.76 | 104.09 | 106.75 | 62.07 |
Realizable k-ε+SS模型 | 81.18 | 101.10 | 103.21 | 69.04 |
RNG k-ε+ZGB模型 | 76.65 | 98.22 | 100.95 | 62.72 |
RNG k-ε+SS模型 | 76.11 | 97.64 | 99.41 | 68.37 |
试验和模型 | 区段/μm | |||
---|---|---|---|---|
0~ 46 | 46~ 150 | 150~ 260 | 260~ 300 | |
Winklhofer等[ | 103.94 | 106.70 | 111.76 | 103.13 |
SST k-ω+ZGB模型 | 84.31 | 121.63 | 122.19 | 77.54 |
SST k-ω+SS模型 | 95.36 | 116.55 | 116.96 | 91.11 |
Realizable k-ε+ZGB模型 | 82.56 | 116.47 | 117.35 | 74.66 |
Realizable k-ε+SS模型 | 85.59 | 113.57 | 114.51 | 81.60 |
RNG k-ε+ZGB模型 | 85.65 | 114.28 | 114.97 | 78.64 |
RNG k-ε+SS模型 | 91.06 | 111.22 | 111.18 | 90.31 |
Table 6 Comparison of average flow rate results of section x1 at 67 bar differential pressure m/s
试验和模型 | 区段/μm | |||
---|---|---|---|---|
0~ 46 | 46~ 150 | 150~ 260 | 260~ 300 | |
Winklhofer等[ | 103.94 | 106.70 | 111.76 | 103.13 |
SST k-ω+ZGB模型 | 84.31 | 121.63 | 122.19 | 77.54 |
SST k-ω+SS模型 | 95.36 | 116.55 | 116.96 | 91.11 |
Realizable k-ε+ZGB模型 | 82.56 | 116.47 | 117.35 | 74.66 |
Realizable k-ε+SS模型 | 85.59 | 113.57 | 114.51 | 81.60 |
RNG k-ε+ZGB模型 | 85.65 | 114.28 | 114.97 | 78.64 |
RNG k-ε+SS模型 | 91.06 | 111.22 | 111.18 | 90.31 |
试验和模型 | 区段/μm | |||
---|---|---|---|---|
0~ 55 | 55~ 150 | 150~ 254 | 254~ 300 | |
Winklhofer等[ | 44.82 | 93.72 | 96.08 | 60.44 |
SST k-ω+ZGB模型 | 75.97 | 115.82 | 116.12 | 71.86 |
SST k-ω+SS模型 | 75.13 | 112.63 | 113.34 | 76.59 |
Realizable k-ε+ZGB模型 | 69.39 | 111.47 | 110.38 | 67.78 |
Realizable k-ε+SS模型 | 72.40 | 109.28 | 108.91 | 70.18 |
RNG k-ε+ZGB模型 | 60.13 | 103.21 | 102.25 | 62.92 |
RNG k-ε+SS模型 | 59.97 | 103.04 | 103.85 | 67.09 |
Table 7 Comparison of average flow rate results of section x2 at 55 bar differential pressure m/s
试验和模型 | 区段/μm | |||
---|---|---|---|---|
0~ 55 | 55~ 150 | 150~ 254 | 254~ 300 | |
Winklhofer等[ | 44.82 | 93.72 | 96.08 | 60.44 |
SST k-ω+ZGB模型 | 75.97 | 115.82 | 116.12 | 71.86 |
SST k-ω+SS模型 | 75.13 | 112.63 | 113.34 | 76.59 |
Realizable k-ε+ZGB模型 | 69.39 | 111.47 | 110.38 | 67.78 |
Realizable k-ε+SS模型 | 72.40 | 109.28 | 108.91 | 70.18 |
RNG k-ε+ZGB模型 | 60.13 | 103.21 | 102.25 | 62.92 |
RNG k-ε+SS模型 | 59.97 | 103.04 | 103.85 | 67.09 |
试验和模型 | 区段/μm | |||
---|---|---|---|---|
0~ 63 | 63~ 150 | 150~ 256 | 256~ 300 | |
Winklhofer等[ | 96.82 | 112.02 | 113.51 | 106.63 |
SST k-ω+ZGB模型 | 80.26 | 133.37 | 130.02 | 73.38 |
SST k-ω+SS模型 | 84.00 | 125.60 | 127.41 | 87.46 |
Realizable k-ε+ZGB模型 | 74.83 | 124.34 | 121.38 | 69.17 |
Realizable k-ε+SS模型 | 77.82 | 121.14 | 121.44 | 80.89 |
RNG k-ε+ZGB模型 | 74.84 | 120.75 | 119.09 | 71.67 |
RNG k-ε+SS模型 | 75.41 | 118.52 | 115.92 | 73.72 |
Table 8 Comparison of average flow rate results of section x2 at 67 bar differential pressure m/s
试验和模型 | 区段/μm | |||
---|---|---|---|---|
0~ 63 | 63~ 150 | 150~ 256 | 256~ 300 | |
Winklhofer等[ | 96.82 | 112.02 | 113.51 | 106.63 |
SST k-ω+ZGB模型 | 80.26 | 133.37 | 130.02 | 73.38 |
SST k-ω+SS模型 | 84.00 | 125.60 | 127.41 | 87.46 |
Realizable k-ε+ZGB模型 | 74.83 | 124.34 | 121.38 | 69.17 |
Realizable k-ε+SS模型 | 77.82 | 121.14 | 121.44 | 80.89 |
RNG k-ε+ZGB模型 | 74.84 | 120.75 | 119.09 | 71.67 |
RNG k-ε+SS模型 | 75.41 | 118.52 | 115.92 | 73.72 |
[1] |
刘勇. 国内外柴油机电控喷油技术的发展现状及前景[J]. 南方农机, 2020, 51(20): 191-192.
|
|
|
[2] |
郑军伟, 伍钰鹏. 船舶柴油机技术发展现状与趋势探索[J]. 机械研究与应用, 2017, 30(5): 191-192, 196.
|
|
|
[3] |
doi: 10.1299/jsmeb.49.1253 URL |
[4] |
|
[5] |
|
[6] |
doi: 10.1016/j.flowmeasinst.2022.102172 URL |
[7] |
doi: 10.1016/j.fuel.2020.120013 URL |
[8] |
doi: 10.1021/acsomega.9b03623 pmid: 32280858 |
[9] |
doi: 10.1016/j.ijheatmasstransfer.2019.118991 URL |
[10] |
doi: 10.1016/j.fuel.2020.119457 URL |
[11] |
doi: 10.2514/3.12149 URL |
[12] |
doi: 10.1016/0045-7930(94)00032-T URL |
[13] |
doi: 10.1007/BF01061452 URL |
[14] |
|
[15] |
|
[16] |
doi: 10.1016/j.ijmultiphaseflow.2015.05.006 URL |
[17] |
doi: 10.1016/j.fuel.2020.119324 URL |
[18] |
侯夏伊, 胡俊, 于勇. 不同空化模型对附着空化的数值模拟与评价[J]. 兵工学报, 2020, 41(增刊1): 91-96.
|
|
|
[19] |
doi: 10.1016/j.apm.2017.01.035 URL |
[20] |
doi: 10.1017/S0022112008003777 URL |
[1] | WANG Minghuan, LÜ Ming, HE Kailei, ZHENG Jinsong, XU Xuefeng. Effect of Cavitation Micro-jet in Interelectrode Gap on Material Erosion in Ultrasonic Assisted Electrochemical Micromachining [J]. Acta Armamentarii, 2023, 44(8): 2368-2380. |
[2] | GU Jianxiao, DANG Jianjun, HUANG Chuang, LI Daijin, LIU Fuqiang. Influence of Weight Parameters on the Effective Range of Supercavitation Projectile [J]. Acta Armamentarii, 2022, 43(6): 1376-1386. |
[3] | LI Yiguo, WANG Cong, WU Yuyan, CAO Wei, LU Jiaxing, HE Qiankun. On the Motion Characteristics of Cavity Wall in the High-speed Water Entry of Trans-media Vehicle [J]. Acta Armamentarii, 2022, 43(3): 574-585. |
[4] | ZHANG Fuyi, LU Hang, CHEN Tairan, WU Qin, HUANG Biao, WANG Guoyu. Transient Characteristics of Start-up Process of an Axial Flow Water-jet Propeller [J]. Acta Armamentarii, 2021, 42(8): 1592-1603. |
[5] | YU Delei, CAO Wei, WEI Yingjie. Experimental Reaserch on Cavitation and Motion Characteristics of Low-speed Water Entry of Rotary Bodies in Tandem [J]. Acta Armamentarii, 2020, 41(7): 1375-1383. |
[6] | YANG Long, HU Changli, LUO Qian. Study of Characteristics of Inception Cavitating Flows around an Axisymmetric Blunt Body at Different Angles of Attack [J]. Acta Armamentarii, 2020, 41(4): 711-719. |
[7] | LI Guoliang, YOU Tianqing, KONG Decai,LI Jing,ZHOU Weijiang. Effect of Fluid Compressibility on High-speed Water-entry of Revolutionary Body [J]. Acta Armamentarii, 2020, 41(4): 720-729. |
[8] | ZHOU Junjie, YUAN Shihua, JING Chongbo. Research on Flow Characteristics of Gear Pump Considering Cavitation Effect [J]. Acta Armamentarii, 2020, 41(1): 189-195. |
[9] | MU Yining, CHEN Xuewei, LIU Chunyang, LIU Dexing, HAO Guoyin. Research on Electro-optical Composite Detection Mechanism Based on Microchannel Active Substrate [J]. Acta Armamentarii, 2019, 40(8): 1665-1672. |
[10] | WANG Wei, WANG Cong, LI Conghui, SONG Wuchao. The Influence of Wetted Area of Vehicle on the Wake Structure of Cavity [J]. Acta Armamentarii, 2019, 40(10): 2111-2118. |
[11] | WANG Guo-zheng, YUAN Yun-long, YANG Chao, LING Hai-rong, WANG Ji, YANG Ji-kai, LI Ye, DUANMU Qing-duo. Micromachining Processes for Si Microchannel Plates [J]. Acta Armamentarii, 2018, 39(9): 1804-1810. |
[12] | SHI Hong-hui, ZHOU Dong-hui, SUN Ya-ya, JIA Hui-xia, HOU Jian. Research on the Characteristics of Supercavitating Flows Caused by Underwater Continuously Fired Projectiles [J]. Acta Armamentarii, 2018, 39(11): 2228-2235. |
[13] | WANG Tao, MAO Ming, TANG Shou-sheng, GAI Jiang-tao, JI Hai. Research on Lubrication Mechanism of Retaining Spherical Pair of Variable Displacement Axial Piston Pump [J]. Acta Armamentarii, 2017, 38(3): 424-432. |
[14] | HUANG Chuang, DANG Jian-jun, LI Dai-jin, LUO Kai. Influence of Transonic motion on Resistance and Cavitation Characteristics of Projectiles [J]. Acta Armamentarii, 2016, 37(8): 1482-1488. |
[15] | QIU Tao, XU Hui, LEI Yan. Experimental Research on the Process of Cavitation and Its Influence on the Nozzle of Diesel Engine [J]. Acta Armamentarii, 2016, 37(11): 2114-2119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||