Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (8): 2503-2520.doi: 10.12382/bgxb.2022.0272
Previous Articles Next Articles
CHEN Song, ZHU Dongsheng*(), ZUO Qinwen**(
), HAN Chaoshuai
Received:
2022-04-18
Online:
2023-08-30
Contact:
ZHU Dongsheng, ZUO Qinwen
CLC Number:
CHEN Song, ZHU Dongsheng, ZUO Qinwen, HAN Chaoshuai. GA-PS Based Three-dimensional Space Source Inversion Algorithm[J]. Acta Armamentarii, 2023, 44(8): 2503-2520.
Add to citation manager EndNote|Ris|BibTeX
方向 | 扩散 方程 | 大气 稳定度 | γ | μ | 下风 距离/m |
---|---|---|---|---|---|
y | σy=γxμ | D级 | 0.110726 | 0.929418 | 1~1000 |
0.146669 | 0.888723 | >1000 | |||
z | σz=γxμ | D级 | 0.104634 | 0.826212 | 1~1000 |
0.400167 | 0.632023 | >1000 |
Table 1 Diffusion parameters[22]
方向 | 扩散 方程 | 大气 稳定度 | γ | μ | 下风 距离/m |
---|---|---|---|---|---|
y | σy=γxμ | D级 | 0.110726 | 0.929418 | 1~1000 |
0.146669 | 0.888723 | >1000 | |||
z | σz=γxμ | D级 | 0.104634 | 0.826212 | 1~1000 |
0.400167 | 0.632023 | >1000 |
y/m | x/m | |||||
---|---|---|---|---|---|---|
250 | 500 | 750 | 1000 | 1250 | ||
100 | 31.95802862 | 387.08525 | 367.6454777 | 278.3340544 | 90.40847051 | |
60 | 630.7893626 | 1121.3852 | 594.006858 | 366.1385291 | 261.0453579 | |
20 | 575.6576425 | 773.066851 | 416.7973147 | 333.6252268 | 245.2681073 | |
-20 | 0.416086777 | 36.60284873 | 227.8322835 | 209.8455332 | 181.8178239 | |
-60 | 9.57555×10-7 | 5.634278715 | 53.85226113 | 92.8115419 | 105.2333203 | |
-100 | 6.8812×10-15 | 0.057732329 | 6.802763206 | 13.05211306 | 47.75791929 |
Table 2 Observed concentration at monitoring pointsg/m3
y/m | x/m | |||||
---|---|---|---|---|---|---|
250 | 500 | 750 | 1000 | 1250 | ||
100 | 31.95802862 | 387.08525 | 367.6454777 | 278.3340544 | 90.40847051 | |
60 | 630.7893626 | 1121.3852 | 594.006858 | 366.1385291 | 261.0453579 | |
20 | 575.6576425 | 773.066851 | 416.7973147 | 333.6252268 | 245.2681073 | |
-20 | 0.416086777 | 36.60284873 | 227.8322835 | 209.8455332 | 181.8178239 | |
-60 | 9.57555×10-7 | 5.634278715 | 53.85226113 | 92.8115419 | 105.2333203 | |
-100 | 6.8812×10-15 | 0.057732329 | 6.802763206 | 13.05211306 | 47.75791929 |
运行次数 | x/m | y/m | He/m | Q/(g·s-1) | 耗时/s | x相对误差/10-4 | y相对误差 | He相对误差 | Q相对误差/10-5 |
---|---|---|---|---|---|---|---|---|---|
1 | 30.01 | 50.00 | 10.00 | 4999783.77 | 236.204 | 3.33 | 0 | 0 | 4.32 |
2 | 29.99 | 50.00 | 10.00 | 5000205.93 | 238.033 | 3.33 | 0 | 0 | 4.12 |
3 | 30.01 | 50.00 | 10.00 | 4999787.93 | 270.030 | 3.33 | 0 | 0 | 4.24 |
4 | 30.01 | 50.00 | 10.00 | 4999782.37 | 201.632 | 3.33 | 0 | 0 | 4.35 |
5 | 30.01 | 50.00 | 10.00 | 4999769.90 | 264.663 | 3.33 | 0 | 0 | 4.60 |
6 | 30.01 | 50.00 | 10.00 | 4999820.43 | 177.936 | 3.33 | 0 | 0 | 3.59 |
7 | 30.01 | 50.00 | 10.00 | 4999805.10 | 279.241 | 3.33 | 0 | 0 | 3.90 |
8 | 30.01 | 50.00 | 10.00 | 4999780.06 | 264.850 | 3.33 | 0 | 0 | 4.40 |
9 | 29.99 | 50.00 | 10.00 | 5000217.31 | 190.394 | 3.33 | 0 | 0 | 4.35 |
10 | 30.01 | 50.00 | 10.00 | 4999758.12 | 323.281 | 3.33 | 0 | 0 | 4.84 |
Table 3 Results of the MGAPS algorithm
运行次数 | x/m | y/m | He/m | Q/(g·s-1) | 耗时/s | x相对误差/10-4 | y相对误差 | He相对误差 | Q相对误差/10-5 |
---|---|---|---|---|---|---|---|---|---|
1 | 30.01 | 50.00 | 10.00 | 4999783.77 | 236.204 | 3.33 | 0 | 0 | 4.32 |
2 | 29.99 | 50.00 | 10.00 | 5000205.93 | 238.033 | 3.33 | 0 | 0 | 4.12 |
3 | 30.01 | 50.00 | 10.00 | 4999787.93 | 270.030 | 3.33 | 0 | 0 | 4.24 |
4 | 30.01 | 50.00 | 10.00 | 4999782.37 | 201.632 | 3.33 | 0 | 0 | 4.35 |
5 | 30.01 | 50.00 | 10.00 | 4999769.90 | 264.663 | 3.33 | 0 | 0 | 4.60 |
6 | 30.01 | 50.00 | 10.00 | 4999820.43 | 177.936 | 3.33 | 0 | 0 | 3.59 |
7 | 30.01 | 50.00 | 10.00 | 4999805.10 | 279.241 | 3.33 | 0 | 0 | 3.90 |
8 | 30.01 | 50.00 | 10.00 | 4999780.06 | 264.850 | 3.33 | 0 | 0 | 4.40 |
9 | 29.99 | 50.00 | 10.00 | 5000217.31 | 190.394 | 3.33 | 0 | 0 | 4.35 |
10 | 30.01 | 50.00 | 10.00 | 4999758.12 | 323.281 | 3.33 | 0 | 0 | 4.84 |
L | K | x/m | y/m | He/m | Q/(g·s-1) | 耗时/s | Q相对误差/10-5 |
---|---|---|---|---|---|---|---|
2 | 30.01 | 50.00 | 10.00 | 4999801.58 | 41.84 | 3.97 | |
5 | 3 | 29.99 | 50.00 | 10.00 | 5000219.65 | 53.17 | 4.39 |
5 | 29.99 | 50.00 | 10.00 | 5000189.99 | 97.68 | 3.80 | |
8 | 29.99 | 50.00 | 10.00 | 5000217.69 | 278.46 | 4.35 | |
2 | 30.02 | 50.00 | 10.00 | 4999561.25 | 109.27 | 8.78 | |
10 | 5 | 30.01 | 50.00 | 10.00 | 4999809.47 | 232.13 | 3.81 |
8 | 29.99 | 50.00 | 10.00 | 5000201.85 | 254.10 | 4.04 |
Table 4 Operation efficiency and results with different cycle times
L | K | x/m | y/m | He/m | Q/(g·s-1) | 耗时/s | Q相对误差/10-5 |
---|---|---|---|---|---|---|---|
2 | 30.01 | 50.00 | 10.00 | 4999801.58 | 41.84 | 3.97 | |
5 | 3 | 29.99 | 50.00 | 10.00 | 5000219.65 | 53.17 | 4.39 |
5 | 29.99 | 50.00 | 10.00 | 5000189.99 | 97.68 | 3.80 | |
8 | 29.99 | 50.00 | 10.00 | 5000217.69 | 278.46 | 4.35 | |
2 | 30.02 | 50.00 | 10.00 | 4999561.25 | 109.27 | 8.78 | |
10 | 5 | 30.01 | 50.00 | 10.00 | 4999809.47 | 232.13 | 3.81 |
8 | 29.99 | 50.00 | 10.00 | 5000201.85 | 254.10 | 4.04 |
信噪比 | x/m | y/m | He/m | Q/(g·s-1) |
---|---|---|---|---|
1 | 29.90 | 50.01 | 10.01 | 5004664.41 |
2 | 29.85 | 50.01 | 9.99 | 4998803.34 |
5 | 30.12 | 49.98 | 10.00 | 5000158.02 |
10 | 29.89 | 50.00 | 10.00 | 5001630.80 |
30 | 29.98 | 50.00 | 10.00 | 5000407.74 |
Table 5 Comparison of inversion results with different SNRs (L=5,K=3)
信噪比 | x/m | y/m | He/m | Q/(g·s-1) |
---|---|---|---|---|
1 | 29.90 | 50.01 | 10.01 | 5004664.41 |
2 | 29.85 | 50.01 | 9.99 | 4998803.34 |
5 | 30.12 | 49.98 | 10.00 | 5000158.02 |
10 | 29.89 | 50.00 | 10.00 | 5001630.80 |
30 | 29.98 | 50.00 | 10.00 | 5000407.74 |
小数点后位数 | 信噪比 | x/m | y/m | He/m | Q/(g·s-1) |
---|---|---|---|---|---|
0 | 理论数据 | 30.01 | 50.00 | 10.00 | 4998269.65 |
1 | 29.96 | 50.01 | 10.01 | 5003615.83 | |
2 | 理论数据 | 29.99 | 50.00 | 10.00 | 5000197.03 |
1 | 29.93 | 50.01 | 10.01 | 5003981.70 | |
4 | 理论数据 | 30.01 | 50.00 | 10.00 | 4999746.44 |
1 | 29.93 | 50.01 | 10.01 | 5003978.16 | |
6 | 理论数据 | 30.02 | 50.00 | 10.00 | 4999494.65 |
1 | 29.93 | 50.01 | 10.01 | 5003970.80 |
Table 6 Comparison of inversion results under different observation accuracies (L=5,K=3)
小数点后位数 | 信噪比 | x/m | y/m | He/m | Q/(g·s-1) |
---|---|---|---|---|---|
0 | 理论数据 | 30.01 | 50.00 | 10.00 | 4998269.65 |
1 | 29.96 | 50.01 | 10.01 | 5003615.83 | |
2 | 理论数据 | 29.99 | 50.00 | 10.00 | 5000197.03 |
1 | 29.93 | 50.01 | 10.01 | 5003981.70 | |
4 | 理论数据 | 30.01 | 50.00 | 10.00 | 4999746.44 |
1 | 29.93 | 50.01 | 10.01 | 5003978.16 | |
6 | 理论数据 | 30.02 | 50.00 | 10.00 | 4999494.65 |
1 | 29.93 | 50.01 | 10.01 | 5003970.80 |
释放 序号 | 释放 时间 | 释放 高度/ m | 释放时段平均 | 大气 稳定度 分类 | 排放 速率/ (g·s-1) | |
---|---|---|---|---|---|---|
风向/ (°) | 风速/ (m·s-1) | |||||
1 | 第1天 | 100 | 68 | 4.7 | CDD | 20.38 |
2 | 第1天 | 100 | 68 | 5.2 | DD | 12.06 |
3 | 第2天 | 100 | 66 | 5.5 | DDC | 8.98 |
4 | 第2天 | 30 | 67 | 7.1 | DD | 10.65 |
5 | 第2天 | 30 | 72 | 6.8 | DDC | 10.42 |
6 | 第2天 | 100 | 80 | 5.2 | CC | 16.36 |
7 | 第3天 | 100 | 73 | 2.5 | DDD | 11.53 |
8 | 第3天 | 30 | 223 | 2.2 | CC | 5.77 |
9 | 第3天 | 30 | 280 | 0.5 | CCC | 11.20 |
10 | 第4天 | 100 | 260 | 7.9 | CC | 12.40 |
11 | 第4天 | 100 | 254 | 7.0 | DD | 16.29 |
12 | 第4天 | 100 | 250 | 7.3 | DD | 10.11 |
13 | 第4天 | 100 | 259 | 6.9 | CC | 13.49 |
14 | 第4天 | 100 | 251 | 6.9 | CC | 9.03 |
15 | 第4天 | 100 | 252 | 6.9 | CCC | 19.92 |
16 | 第5天 | 100 | 340 | 2.8 | BBB | 15.71 |
17 | 第5天 | 100 | 323 | 3.3 | BBB | 13.22 |
18 | 第5天 | 100 | 359 | 3.9 | BB | 17.22 |
19 | 第5天 | 100 | 348 | 4.5 | BB | 10.61 |
20 | 第5天 | 100 | 350 | 4.7 | BBB | 14.09 |
21 | 第6天 | 100 | 339 | 3.5 | DDB | 14.42 |
22 | 第6天 | 100 | 353 | 2.7 | BB | 16.31 |
23 | 第6天 | 100 | 7 | 5.6 | BB | 8.59 |
Table 7 SF6 tracer experiment and simulation conditions
释放 序号 | 释放 时间 | 释放 高度/ m | 释放时段平均 | 大气 稳定度 分类 | 排放 速率/ (g·s-1) | |
---|---|---|---|---|---|---|
风向/ (°) | 风速/ (m·s-1) | |||||
1 | 第1天 | 100 | 68 | 4.7 | CDD | 20.38 |
2 | 第1天 | 100 | 68 | 5.2 | DD | 12.06 |
3 | 第2天 | 100 | 66 | 5.5 | DDC | 8.98 |
4 | 第2天 | 30 | 67 | 7.1 | DD | 10.65 |
5 | 第2天 | 30 | 72 | 6.8 | DDC | 10.42 |
6 | 第2天 | 100 | 80 | 5.2 | CC | 16.36 |
7 | 第3天 | 100 | 73 | 2.5 | DDD | 11.53 |
8 | 第3天 | 30 | 223 | 2.2 | CC | 5.77 |
9 | 第3天 | 30 | 280 | 0.5 | CCC | 11.20 |
10 | 第4天 | 100 | 260 | 7.9 | CC | 12.40 |
11 | 第4天 | 100 | 254 | 7.0 | DD | 16.29 |
12 | 第4天 | 100 | 250 | 7.3 | DD | 10.11 |
13 | 第4天 | 100 | 259 | 6.9 | CC | 13.49 |
14 | 第4天 | 100 | 251 | 6.9 | CC | 9.03 |
15 | 第4天 | 100 | 252 | 6.9 | CCC | 19.92 |
16 | 第5天 | 100 | 340 | 2.8 | BBB | 15.71 |
17 | 第5天 | 100 | 323 | 3.3 | BBB | 13.22 |
18 | 第5天 | 100 | 359 | 3.9 | BB | 17.22 |
19 | 第5天 | 100 | 348 | 4.5 | BB | 10.61 |
20 | 第5天 | 100 | 350 | 4.7 | BBB | 14.09 |
21 | 第6天 | 100 | 339 | 3.5 | DDB | 14.42 |
22 | 第6天 | 100 | 353 | 2.7 | BB | 16.31 |
23 | 第6天 | 100 | 7 | 5.6 | BB | 8.59 |
组 | 下风向距离/km | 采样点数量 | 采样点编号 |
---|---|---|---|
A | 0.5 | 9 | A1~A9 |
B | 1 | 9 | B1~B9 |
C | 2 | 8 | C1~C8 |
D | 3 | 8 | D1~D8 |
E | 5 | 8 | E1~E8 |
F | 7 | 4 | F1~F4 |
G | 10 | 4 | G1~G4 |
Table 8 Sample point grouping
组 | 下风向距离/km | 采样点数量 | 采样点编号 |
---|---|---|---|
A | 0.5 | 9 | A1~A9 |
B | 1 | 9 | B1~B9 |
C | 2 | 8 | C1~C8 |
D | 3 | 8 | D1~D8 |
E | 5 | 8 | E1~E8 |
F | 7 | 4 | F1~F4 |
G | 10 | 4 | G1~G4 |
Fig.16 The 1st release of the effective sampling point position of the 1st sampling (adjust the positive direction of the x-axis to the downwind direction)
释放序号 | 有效样品数 | 总计采集数 | 有效样品率/% |
---|---|---|---|
1 | 90 | 150 | 60.0 |
2 | 61 | 100 | 61.0 |
3 | 87 | 150 | 58.0 |
4 | 57 | 100 | 57.0 |
5 | 82 | 150 | 54.7 |
6 | 54 | 100 | 54.0 |
7 | 76 | 150 | 50.7 |
8 | 62 | 100 | 62.0 |
9 | 53 | 150 | 35.3 |
10 | 57 | 100 | 57.0 |
11 | 56 | 100 | 56.0 |
12 | 56 | 100 | 56.0 |
13 | 64 | 100 | 64.0 |
14 | 61 | 100 | 61.0 |
15 | 76 | 150 | 50.7 |
16 | 103 | 150 | 68.7 |
17 | 99 | 150 | 66.0 |
18 | 65 | 100 | 65.0 |
19 | 66 | 100 | 66.0 |
20 | 77 | 150 | 51.3 |
21 | 101 | 150 | 67.3 |
22 | 64 | 100 | 64.0 |
23 | 66 | 100 | 66.0 |
总计 | 1633 | 2800 | 58.8 |
Table 9 Effective sample collection rate of each test
释放序号 | 有效样品数 | 总计采集数 | 有效样品率/% |
---|---|---|---|
1 | 90 | 150 | 60.0 |
2 | 61 | 100 | 61.0 |
3 | 87 | 150 | 58.0 |
4 | 57 | 100 | 57.0 |
5 | 82 | 150 | 54.7 |
6 | 54 | 100 | 54.0 |
7 | 76 | 150 | 50.7 |
8 | 62 | 100 | 62.0 |
9 | 53 | 150 | 35.3 |
10 | 57 | 100 | 57.0 |
11 | 56 | 100 | 56.0 |
12 | 56 | 100 | 56.0 |
13 | 64 | 100 | 64.0 |
14 | 61 | 100 | 61.0 |
15 | 76 | 150 | 50.7 |
16 | 103 | 150 | 68.7 |
17 | 99 | 150 | 66.0 |
18 | 65 | 100 | 65.0 |
19 | 66 | 100 | 66.0 |
20 | 77 | 150 | 51.3 |
21 | 101 | 150 | 67.3 |
22 | 64 | 100 | 64.0 |
23 | 66 | 100 | 66.0 |
总计 | 1633 | 2800 | 58.8 |
类别 | SFB | SNMSE | SFAC2 | SCOR |
---|---|---|---|---|
理想值 | 0 | 0 | 1 | 1 |
可接受范围 | -0.3~0.3 | < 4 | > 0.5 | > 0.7 |
统计值 | 0.1736 | 0.2644 | 0.6 | 0.7481 |
Table 10 Statistical error of predicted value of MGAPS algorithm
类别 | SFB | SNMSE | SFAC2 | SCOR |
---|---|---|---|---|
理想值 | 0 | 0 | 1 | 1 |
可接受范围 | -0.3~0.3 | < 4 | > 0.5 | > 0.7 |
统计值 | 0.1736 | 0.2644 | 0.6 | 0.7481 |
[1] |
郭立军, 曹霞, 宋剑. 化学事故危害后果评估与应急救援的辅助决策系统设计[J]. 中国安全生产科学技术, 2011, 7(6):33-37.
|
|
|
[2] |
王奋伟, 梁赤勇, 王男. 核生化灾害模拟与仿真技术与装备研究综述[C]//第一届中国指挥控制大会论文集. 北京: 中国指挥与控制学会, 2013:650-653.
|
|
|
[3] |
韩朝帅, 诸雪征, 顾进, 等. 核化危害源项反演技术现状及研究展望[J]. 化工环保, 2021, 41(2):146-155.
doi: 10.3969/j.issn.1006-1878.2021.02.004 |
doi: 10.3969/j.issn.1006-1878.2021.02.004 |
|
[4] |
李颢青. 工业有毒气体的溯源模型研究[D]. 大连: 大连理工大学, 2018.
|
|
|
[5] |
|
[6] |
doi: 10.1016/j.atmosenv.2018.01.056 URL |
[7] |
doi: 10.1016/j.neucom.2018.02.078 URL |
[8] |
doi: 10.3390/s19051092 URL |
[9] |
doi: 10.1016/j.envpol.2021.117186 URL |
[10] |
王煜薇. 基于混合遗传-Nelder Mead单纯形算法的源强及位置反算[D]. 北京: 北京化工大学, 2011.
|
|
|
[11] |
|
[12] |
史阳. 有毒气体罐车运输泄漏的源强及位置反算研究[D]. 兰州: 兰州交通大学, 2013.
|
|
|
[13] |
陈增强. 混合遗传—模式搜索算法在毒气泄漏中的源强反算研究[D]. 北京: 北京化工大学, 2009.
|
|
|
[14] |
郑小平, 陈增强. 模式搜索算法在毒气泄漏中的源强反算[J]. 中国安全科学学报, 2010, 20(5):29-34.
|
|
|
[15] |
胡峰, 郎建垒, 毛书帅, 等. 典型优化目标函数下源参数反演性能对比研究[J]. 中国环境科学, 2021, 41(5):2081-2089.
|
|
|
[16] |
|
[17] |
doi: 10.1109/TPWRS.2009.2021226 URL |
[18] |
郑树泉. 工业智能技术与应用[M]. 上海: 上海科学技术出版社, 2019.
|
|
|
[19] |
雷英杰, 张善文. MATLAB遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2014.
|
|
|
[20] |
doi: 10.1145/321062.321069 URL |
[21] |
庄正宁. 环境工程基础[M]. 北京: 中国电力出版社, 2006.
|
|
|
[22] |
制定地方大气污染物排放标准的技术方法: GB/T 3840—1991[S]. 北京: 国家技术监督局/国家环境保护局, 1991.
|
Technical methods for formulating local air pollutant emission standards:GB/T 3840—1991[S]. Beijing: State Bureau of Technical Supervision/State Bureau of Environmental Protection, 1991. (in Chinese)
|
|
[23] |
周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版社, 1999.
|
|
|
[24] |
陈增强. 危险化学品泄漏源的定位研究[D]. 北京: 北京化工大学, 2013.
|
|
|
[25] |
崔继宪. 突发大气污染事故快速溯源与应急评估技术研究及验证[D]. 北京: 北京工业大学, 2019.
|
|
|
[26] |
|
[27] |
邹敬, 曲静原, 曹建主. 大气扩散模型验证与比对的工具和方法[J]. 辐射防护通讯, 2004, 24(5):15-20.
|
|
|
[28] |
宁莎莎, 李璟涛, 张怀宇. 核事故应急大气扩散模型ARTM验证与评价[J]. 南方能源建设, 2020, 7(4):93-98.
|
|
[1] | MA Weining, HU Qiwei, CHEN Jing, JIA Xisheng. Joint Optimization of Selective Maintenance Decision and Mission Assignment for Equipment Groups [J]. Acta Armamentarii, 2024, 45(2): 407-416. |
[2] | QIN Guohua, LOU Weida, LIN Feng, XU Yong. A Novel Method of Stability Judgment and Milling Parameter Optimization Based on Cotes Integration Method and Neural Network [J]. Acta Armamentarii, 2024, 45(2): 516-526. |
[3] | LIU Zichang, LI Siyu, PEI Mochao, LIU Jie, MENG Shuo, WU Weiyi. Fault Diagnosis Method for Diesel Engine Based on Texture Analysis [J]. Acta Armamentarii, 2024, 45(2): 684-694. |
[4] | YE Wenyu, WANG Chunyang, YU Jinyang, TUO Mingkan, WANG Zishuo. Multi-beam Scanning of Liquid Crystal Optical Phased Array Based on Greedy Algorithm [J]. Acta Armamentarii, 2023, 44(9): 2650-2660. |
[5] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[6] | LIU Yan, WANG Baichuan, YAN Junbo, YAN Zichen, SHI Zhenqing, HUANG Fenglei. Dynamic Response of Honeycomb Sandwich Plate with Negative Poisson’s Ratio under Penetration [J]. Acta Armamentarii, 2023, 44(7): 1938-1953. |
[7] | DU Weiwei, CHEN Xiaowei. Task Assignment and Optimization Method of Tactical-Level Army Operations [J]. Acta Armamentarii, 2023, 44(5): 1431-1442. |
[8] | CHEN Liang, LIU Rong-zhong, GUO Rui, ZHAO Bo-bo, LIU Lei, YANG Yong-liang. Multi-objective Optimization on Aerodynamic Shape of Projectile with Twisted Empennages [J]. Acta Armamentarii, 2016, 37(7): 1187-1193. |
[9] | WANG Qin-long, WANG Hong-yan, RUI Qiang. Research on Parameter Updating of High Mobility Tracked Vehicle Dynamic Model Based on Multi-objectiveGenetic Algorithm [J]. Acta Armamentarii, 2016, 37(6): 969-978. |
[10] | JIN Bi-xuan, ZHAI Yong, GU Hong-tao, ZHANG Tao. Optimized Methodfor Shift Valve Used in Integrated Transmission [J]. Acta Armamentarii, 2016, 37(4): 591-597. |
[11] | ZHAO Jian-zhong, OUYANG Zhong-hui, ZHANG Lei,ZHAO Jian-yin. Combined Prediction on Avionics State Optimized by MAGA [J]. Acta Armamentarii, 2016, 37(4): 727-734. |
[12] | WANG Li-qun, YANG Guo-lai, LIU Jun-min, GE Jian-li. Robust Design of Random Factors on Gun Firing Dispersion [J]. Acta Armamentarii, 2016, 37(11): 1983-1988. |
[13] | WANG Ran-hui, WANG Chao. Variable Value Control Technology of Genetic Algorithm for WTA of Ground Target Attacking [J]. Acta Armamentarii, 2016, 37(10): 1889-1895. |
[14] | CHEN Chun-liang, QI Ou, WEI Zhao-lei, LIU Yan. Vehicle Equipment Support Transport Net Optimization Model Based on Monte Carlo Simulation and Genetic Algorithm [J]. Acta Armamentarii, 2016, 37(1): 114-121. |
[15] | DONG Chao-yang, LU Yao, WANG Qing. Improved Genetic Algorithm for Solving Firepower Distribution [J]. Acta Armamentarii, 2016, 37(1): 97-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||