Effects of Corrosion Defects on Mechanical-electrochemical Properties of 921A Steel
LIU Dehong1, XU Qinglin2, WAGN Xiangjun3
(1.Department of Mechanical and Electrical Engineering, Wuhan City College, Wuhan 430083, Hubei, China;2.Unit 91404 of PLA, Qinhuangdao 066003, Hebei, China;3.College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, Hubei, China)
[1] 林春生,龚沈光. 舰船物理场[M].北京:兵器工业出版社,2007. LIN C S,GONG S G. Physical field of warships[M]. Beijing: Publishing House of Ordnance Industry,2007.(in Chinese) [2] 刘德红,张建春,王向军.环境因素对层流下腐蚀静电场的影响[J].兵工学报,2020,41(3):567-576. LIU D H,ZHANG J C,WANG X J. Influence of environmental factors on corrosive electrostatic field under laminar current[J]. Acta Armamentarii,2020,41(3): 567-576. (in Chinese) [3] 姜润翔,张伽伟,林春生.基于点电荷模型的腐蚀相关静电场快速预测方法研究[J].兵工学报,2017,38(4):735-743. JIANG R X,ZHANG J W,LIN C S. Study of quick prediction method for ship corrosion related static electric field based on point charge source model[J].Acta Armamentarii,2017,38(4):735-743. (in Chinese) [4] 徐庆林,王向军,张建春,等.温度对舰船阴极保护和腐蚀静电场的影响[J].国防科技大学学报,2019,41(4): 182-189. XU Q L,WANG X J,ZHANG J C,et al. Influence of temperature on the cathodic protection and corrosion electrostatic field of ships[J].Journal of National University of Defense Technology,2019,41(4):182-189.(in Chinese) [5] WANG H,HAN E H. Computational simulation of corrosion pit interactions under mechanochemical effects using a cellular automaton/finite element model[J]. Corrosion Science,2016,103: 305-311. [6] 王向军,徐庆林,宋玉苏,等.921A钢在海水中腐蚀的力学化学效应[J].国防科技大学学报,2016,44(10):16-21. WANG X J,XU Q L, SONG Y S,et al. Mechanochemical effect of 921A steel corrosion in seawater[J].Journal of National University of Defense Technology,2016,44(10):16-21. (in Chinese) [7] GUTMAN E M. Mechanochemistry of solid surfaces[M]. Singapore: World Scientific,1994: 15-27. [8] ZHANG S,PANG X L,WANG Y B,et al. Corrosion behavior of steel with different microstructures under various elastic loading conditions[J].Corrosion Science,2013,75: 293-299. [9] WANG Y,WHARTON J A,SHENOI R A. Mechano-electrochemical modelling of corroded steel structures[J]. Engineering Structures,2016,128: 1-14. [10] YANG H Q,ZHANG Q,TU S S,et al. Effects of inhomogeneous elastic stress on corrosion behaviour of Q235 steel in 3.5% NaCl solution using a novel multi-channel electrode technique[J].Corrosion Science,2016,110: 1-14. [11] ZHU Y Y,LI L,WANG C,et al. Effects of elastic deformation on the anodic dissolution of X70 carbon steel in sulfuric acid solution[J].Electrochimica Acta,2012,78: 609-614. [12] 马荣耀,王长罡,穆鑫,等. 静水压力对超纯Fe腐蚀行为的影响[J].金属学报,2019,55(7): 859-874. MA R Y,WANG C G,MU X,et al. Influence of hydrostatic pressure on corrosion behavior of ultrapure Fe[J]. Acta Metallurgica Sinica,2019,55(7): 859-874. (in Chinese) [13] 蔡文军,陈国明,潘东民. 腐蚀管线剩余强度的非线性分析[J].石油大学学报自然科学版,1999,23(1): 75-76. CAI W J,CHEN G M,PAN D M. Nonlinear analysis on residual strength of corroded pipeline[J].Journal of the University of Petroleum, China (Natural Science Edition) 1999,23(1): 75-76. (in Chinese) [14] 徐庆林,王向军,童余德. 腐蚀电场的力学化学耦合模型[J]. 哈尔滨工业大学学报,2021,53(3):186-192. XU Q L,WANG X J,TONG Y D. Mechanochemical coupling model of corrosion electric field[J].Journal of Harbin Institute of Technology,2021,53(3):186-192.(in Chinese) [15] 张号.Q235在应力和腐蚀介质协同作用下的损伤和寿命评估[D].青岛:青岛科技大学,2012. ZHANG H. The damage and life evalution of Q235 under the synergy impact of stress and corrosive media[D]. Qingdao:Qingdao University of Science and Technology,2012. [16] 尹成先,王新虎,赵雪会,等.压应力对HP13Cr钢电化学腐蚀性能的影响[J].材料保护,2014,47(9):29-32, 7. YIN C X,WANG X H,ZHAO X H,et al. Influence of compressive ctress on electrochemical corrosion behavior of HP13Cr tubing steel[J].Materials Protection,2014,47(9): 29-32, 7. (in Chinese) [17] 饶思贤,张玉波,朱立群,等.外加应力下的LY12CZ电化学行为[J].北京航空航天大学学报,2007,33(10): 1246-1250. RAO S X,ZHANG Y B,ZHU L Q,et al. Electrochemical behaviour of LY12CZ under applied stress[J]. Journal of Beijing University of Aeronautics and Astronautics. 2007,33(10):1246- 1250. (in Chinese) [18] XU L Y,CHENG Y F. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution[J].Corrosion Science,2012,59: 103-109. [19] KIM K,LEE G,PARK K,et al. Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference[J].Reliability Engineering and System Safety,2021,216: 107998. [20] LIU Z,JIA R N,CHEN F Y,et al. Electrochemical process of early-stage corrosion detection based on N-doped carbon dots with superior Fe3+ responsiveness[J].Journal of Colloid And Interface Science,2022,606(Part 1): 567-576. [21] QIN G J,CHENG Y,FRANK,et al. Finite element modeling of corrosion defect growth and failure pressure prediction of pipelines[J].International Journal of Pressure Vessels and Piping,2021,194(Part A): 104509. [22] TSIRLINA G A. The role of supporting electrolyte in heterogeneous electron transfer[J].Journal of Solid State Electrochemistry,2017,21(7): 1833-1845. [23] 李荻.电化学原理[M].第3版.北京:北京航空航天大学出版社, 2008:217-218. LI D.Principle of electrochemistry [M]. 3rd edition. Beijing:Beijing University of Aeronautics and Astronautics Press,2008:217-218.(in Chinese) [24] XU L,CHENG Y F. A finite element based model for prediction of corrosion defect growth on pipelines[J]. International Journal of Pressure Vessels and Piping,2017,153: 70-79. [25] VAN SOESTBERGEN M,MAVINKURVE A,RONGEN R T H,et al. Theory of aluminum metallization corrosion in microelectronics[J]. Electrochimica Acta,2010,55(19): 5459-5469. [26] XU L Y,CHENG Y F. Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion[J]. Corrosion Science,2013,73: 150-160.