Acta Armamentarii ›› 2016, Vol. 37 ›› Issue (1): 172-185.doi: 10.3969/j.issn.1000-1093.2016.01.025
• Comprehensive Review • Previous Articles Next Articles
SONG Qiu-zhi1, WANG Xiao-guang1, WANG Xin1, WANG Yang2
Received:
2015-06-01
Revised:
2015-06-01
Online:
2016-03-23
Contact:
SONG Qiu-zhi
E-mail:qzhsong@bit.edu.cn
CLC Number:
SONG Qiu-zhi, WANG Xiao-guang, WANG Xin, WANG Yang. Development of Multi-joint Exoskeleton-assisted Robot and Its Key Technology Analysis: an Overview[J]. Acta Armamentarii, 2016, 37(1): 172-185.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.co-journal.com/EN/10.3969/j.issn.1000-1093.2016.01.025
[1] Robert B. Robotic exoskeletons: a review of recent progress [J]. Industrial Robot: An International Journal, 2015, 42(1): 5-10. [2] Yan T F, Marco C, Calogero M O, et al. Review of assistive strategies in powered lower-limb orthoses and exoskeletons [J]. Robotics and Autonomous Systems, 2015, 64: 120-136. [3] Lenzi T, Carrozza M C, Agrawal S K. Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking [J].IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(6): 938-948. [4] Dollar A M, Herr H. Design of a quasi-passive knee exoskeleton to assist running [C] ∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008: 747-754. [5] Kao P C, Lewis C L, Ferris D P. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton [J]. Journal of Biomechanics, 2010, 43(2): 203-209. [6] Neil J M. Preliminary design of a full-scale, wearable, exoskeleton structure,AD-A058716 [R].Buffalo, New York , US: Cornell Aeronautical Laboratory, 1963. [7] Repperger D W, Remis S J, Merrill G. Performance measures of teleportation using an Exoskeleton device[C] ∥Proceedings of the IEEE International Conference on Robotics and Automation. Cincinnati, OH: IEEE, 1990:552-557. [8] Giuffrida F, Piaggio M, Guerrasio C. G-EXO, a modular exoskeleton as multi purpose multi media interface [C]∥Proceedings of IEEE International Workshop on Robot and Human Communication. Tsukuba, Japan: IEEE,1996: 213-216. [9] Hayashibara Y, Tanie K, Arai H. Design of a power assist system with consideration of actuator’s maximum torque[C]∥IEEE International Workshop on Robot and Human Communication. Tokyo, Japan: IEEE, 1995:379-384. [10] Jansen J, Richardson B, Pin F. Exoskeleton for soldier enhancement systems feasibility study[R]. Oak Ridge, Florida, US: Oak Ridge National Laboratory, 2000. [11] Dick J, Crapuchettes B.Servo-assisted lower-body exoskeleton with a true running gait[R]. US:DARPA, 2000. [12] Garcia E, Sater J M, Main J. Exoskeletons for human performance augmentation (EHPA): a program summary [J]. Journal of the Robotics Society of Japan, 2002, 20(8): 44-48. [13] Bush N E, Fullerton N, Crumpton R. Original research soldiers' personal technologies on deployment and at home [J]. Telemedicine and E-Health, 2012, 18(4): 253-263. [14] Ben M. Perseus MEA -concept art for an exoskeleton by artist Francis Goeltner [EB/OL]. [2014-02-10]. http:∥soldiersystems.net/2014/02/10/perseus-concept-art-exoskeleton-artist-francis-goeltner/. [15] Low K H, Liu X P, Yu H Y. Development of NTU wearable exoskeleton system for assistive technologies [C]∥IEEE International Conference on Mechatronics & Automation. Niagara Falls, Canada: IEEE, 2005: 1099-1106. [16] 王超, 王玉林, 宋慧新. 人体助力行走机器人关键技术分析[J]. 车辆与动力技术, 2014(1): 53-57. WANG Chao, WANG Yu-lin, SONG Hui-xin. Key technologies analysis of human stepped power assist device [J]. Vehicle & Power Technology, 2014(1): 53-57. (in Chinese) [17] Berkeley Robotics & Human Engineering Laboratory. Exoskeleton [EB/OL]. [2013-04-03]. http:∥bleex.me.berkeley.edu/research/exoskeleton/. [18] Zoss A, Kazerooni H, Chu A. On the mechanical design of the Berkeley lower extremity exoskeleton (BLEEX) [C]∥IEEE International Conference on Intelligent Robots and Systems. Barcelona, Spain: IEEE,2005: 3465-3472. [19] HULC [EB/OL]. [2013-05-13]. http:∥www.lockheedmartin.com/us/products/hulc.html. [20] Walsh C J, Pasch K. An autonomous, underactuated exoskeleton for load-carrying augmentation[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE,2006: 1410-1415. [21] Michael W, Brendan Q, Patrick M A, et al. A light weight soft exosuit for gait assistance[C]∥IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE,2013: 6-10. [22] Asbeck A T, Schmidt K, Walsh C J. Soft exosuit for hip assistance [J]. Robotics and Autonomous Systems (RAS) Special Issue on Wearable Robotics,2014, 73: 102-110. [23] Galiana I Y, Asbeck A, Quinlivan B, et al. Multi-joint actuation platform for lower extremity soft exosuits[C]∥IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014:1327-1334. [24] Asbeck A T, Schmidt K, Galiana I, et al. Multi-joint soft exosuit for gait assistance[C]∥International Conference on Robotics and Automation.Seattle, WA: IEEE,2015: 6197-6204. [25] A new exoskeleton enhance mobility and increase endurance [EB/OL]. [2012-07-07]. http:∥www.raython.com/newsroom/technology/rtn_exoskeleton. [26] Marcheschi S, Salsedo F, Fontana M,et al. Body extender: whole body exoskeleton for human power augmentation[C]∥IEEE International Conference on Robotics and Automation.Shanghai, China: IEEE,2011: 611-616. [27] Fontana M, Vertechy R, Marcheschi S, et al. The body extender: a full-body exoskeleton for the transport and handling of heavy loads [J]. IEEE Robotics & Automation Magazine, 2014, 21(4): 34-44. [28] Kwa H K, Noorden J F, Missel M, et al. Development of the IHMC mobility assist exoskeleton[C]∥IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 1349-1355. [29] Neuhaus P D, Noorden J H, Craig T J,et al. Design and evaluation of mina: a robotic orthosis for paraplegics [C]∥IEEE International Conference on Rehabilitation Robotics.Zurich, Switzerland: IEEE,2011: 1-8. [30] Fortis Exoskeleton [EB/OL]. [2014-08-19]. http:∥www.lockheedmartin.com/us/products/exoskeleton/FORTIS.html. [31] Bock T, Linner T, Ikeda W. Future of humanoid robots [M]. US: InTech Open Access Publisher, 2012: 111-146. [32] Steve C. Walking assist device Honda [EB/OL]. [2008-11-17]. http:∥world.honda.com/news/2008/c081107Walking-Assist-Device. [33] Kim Y S, Lee J W, Lee S Y, et al. A force reflected exoskeleton-type master arm for human-robot interaction [J]. IEEE Transactions on System Man and Cybernetics, Part A: Systems and Humans, 2005, 35(2):198-212. [34] Kim W S, Lee S H, Lee H D, et al. Development of the heavy load transferring task oriented exoskeleton adapted by lower extremity using quasi-active joints [C]∥ICROS-SICE International Joint Conference. Fukuoka, Japan: ICROS, 2009: 1353-1358. [35] Doktor S. ExoAtlet [EB/OL]. [2014-02-11]. http:∥www.exoatlet.com/ [36] Yamamoto K, Hyodo K, Ishii M. Development of power assisting suit for assisting nurse labor [J]. JSME International Journal. Series C, Mechanical Systems, Machine Elements and Manufacturing , 2002, 45(3): 703-711. [37] Neuhaus P, Kazerooni H. Design and control of human assisted walking robot[C]∥IEEE International Conference on Robotics & Auto. San Francisco, CA: IEEE, 2000: 426-431. [38] Esquenazi A, Talaty M, Packel A, et al. The Rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury [J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11): 911-921. [39] Hutan A, Ara D, Thanos A. Autobionics: a new paradigm in regenerative medicine and surgery [J]. Regeneative Medicine, 2010, 5(2): 279-288. [40] Shigeki T, Junichiro Y, Ultra S. Motor powered assisted suit system [J]. Society of Biomechanism, 2006, 30(4):189-193. [41] Hiroshi K, Sho H, Hirokazu N. Development and application of a muscle force enhancement wear: muscle suit[C]∥Proceedings of the 11th Symposium on Construction Robotics. Tokyo, Japan: The Japan Society of Mechanical Engineers, 2008:93-100. [42] Quintero H A, Farris R J, Hartigan C, et al. A powered lower limb orthosis for providing legged mobility in paraplegic individuals [J]. Topics in Spinal Cord Injury Rehabilitation, 2011, 17(1): 25-33. [43] Farris R J, Quintero H A, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6): 652-659. [44] Quintero H A, Farris R J, Goldfarb M. A method for the autonomous control of lower limb exoskeletons for persons with paraplegia [J]. Journal of Medical Devices, 2012, 6(4): 3097-3106. [45] Farris R J, Quintero H A, Goldfarb M. Performance evaluation of a lower limb exoskeleton for stair ascent and descent with paraplegia [C]∥IEEE Engineering in Medicine and Biology Society Conference Proceedings. San Diego, CA: IEEE,2012: 1908-1911. [46] Rex [EB/OL]. [2010-03-15]. http:∥www.rexbionics.com/. [47] Jesus T D, Rebeca C U, Atilla K, et al. Real-time strap pressure sensor system for powered exoskeletons [J]. Sensors, 2015, 15(2): 4550-4563. [48] Wang L T, Wang S Q, Van A, et al. Actively controlled lateral gait assistance in a lower limb exoskeleton [C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE,2013: 965-970. [49] Wang S Q, Wang L T, Meijneke C,et al. Design and control of the MINDWALKER exoskeleton [J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2015, 23(2): 277-286. [50] Mori Y, Okada J, Takayama K. Development of a standing style transfer system "ABLE" for disabled lower limbs [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4): 373-380. [51] Banala S K, Agrawal S K, Fattah A. Gravity balancing leg orthosis for robotic rehabilitation[C]∥IEEE International Conference on Robotics and Automation. New Orleans, LA: IEEE, 2004: 2474-2479. [52] Sai K B, Sunil K A, Abbas F, et al. Gravity balancing leg orthosis and its performance evaluation [J]. IEEE Transactions on Robotics, 2006, 22(6): 1228-1239. [53] Daniel S M, Manuel C, Arevalo J C, et al. Control motion approach of a lower limb orthosis to reduce energy consumption [J]. International Journal of Advanced Robotic Systems, 2012, 9: 1-8. [54] Reuben H. Early teleoperators and exoskeleton [EB/OL]. [2014-02-15]. http:∥cybemeticzoo.com/. [55] Yeh T J, Wu M J, Lu T J. Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis [J].Mechatronics, 2010, 20(6): 686-697. [56] Aphiratsakun N, Parnichkun M. Balancing control of AIT leg exoskeleton using ZMP based FLC [J]. International Journal of Advanced Robotic Systems, 2009, 6(4):319-328. [57] Veneman J F, Ekkelenkam P R, Kruidho F R, et al. A series elastic and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots [J]. International Journal of Robotics Research, 2006, 25(3): 261-281. [58] Jan F V, Rik K,Hekman E E G, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 379-386. [59] Kong K, Jeon D. Design and control of an exoskeleton for the elderly and patients [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4): 428–432. [60] 周龙. 外骨骼机器人负重机理研究及动力学分析[D]. 北京: 北京理工大学, 2013 . ZHOU Long. Load-bearing mechanism and dynamics analysis of exoskeleton robot [D]. Beijing: Beijing Institute of Technology, 2013.(in Chinese) [61] Niu J K, Song Q Z, Wang X G. Fuzzy PID control for passive lower extremity exoskeleton in swing phase[C]∥IEEE International Conference on Electronics Information and Emergency Communication. Beijing, China: IEEE, 2013: 185-188. [62] 牛建凯. 外骨骼机器人助力控制技术研究[D].北京: 北京理工大学, 2014 . NIU Jian-kai. Study on control technology of the exoskeleton robot [D]. Beijing: Beijing Institute of Technology, 2014.(in Chinese) [63] 刘宁宁. 外骨骼机器人的人-机系统平衡稳定性研究[D].北京: 北京理工大学 , 2015. LIU Ning-ning. Study on stability of the exoskeleton robot man-machine system [D]. Beijing: Beijing Institute of Technology, 2015.( in Chinese) [64] Yu L, Zheng Z B, Wang Y. Adaptive method for real-time gait phase detection based on ground contact forces [J].Gait & Posture, 2015, 41(1): 269-275. [65] 归丽华,杨智勇,顾文锦,等.能量辅助骨骼服NAEUES的开发[J]. 海军航空工程学院学报, 2007, 22(4): 467-470. GUI Li-hua, YANG Zhi-yong, GU Wen-jin, et al. Development of power assistance exoskeleton suit (NAEIES)[J]. Journal of Naval Aeronautical Engineering Institute, 2007, 22(4):467-470. (in Chinese) [66] 杨智勇,归丽华,张静,等. 能量辅助骨骼服的研究现状及发展趋势[J]. 山东科技大学学报, 2012, 31(5):41-48. YANG Zhi-yong, GUI Li-hua, ZHANG Jing, et al. Research status and development trend of energy-assisted exoskeleton suit [J]. Journal of Shandong University of Science and Technology, 2012, 31(5):41-48. (in Chinese) [67] 雷兵.协行助力机械腿结构优化及性能评估系统研究[D].上海: 华东理工大学, 2011. LEI Bing. Structure optimization and performance evaluation of leg exoskeleton for load carrying augument [D]. Shanghai: East China University of Science and Technology, 2011. (in Chinese) [68] 秦颖颀.液压驱动的外骨骼服柔顺性驱动系统研究[D].上海: 华东理工大学, 2012. QIN Ying-qi. Study of the supply driving system of hydraulic driven exoskeleton [D]. Shanghai: East China University of Science and Technology, 2012. (in Chinese) [69] 蒋靖.下肢助力外骨骼机构设计与研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. JIANG Jing. Research and mechanism design of lower limb power exoskeletons [D].Harbin: Harbin Institute of Technology, 2012. (in Chinese) [70] 刘放.基干PRBA模型的外骨骼式人机携行运载系统动态特性研究[D]. 成都: 西南交通大学, 2012. LIU Fang. Dynamic characteristic for man-machine accompanying load syetem equipped with exoskeleton based on PRBA model [D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese) [71] Yang C J, Niu B, Chen Y. Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation[C] ∥IEEE/ASME International Conference on Advanced Intelligent Mechatronics. California, US: IEEE,2005: 467-472. [72] 张佳帆.基于柔性外骨骼人机智能系统基础理论及应用技术研究[D].杭州: 浙江大学, 2009. ZHANG Jia-fan. Exoskeleton based man machine intelligent system and its application [D].Hangzhou: Zhejiang University, 2009. (in Chinese) [73] 陈峰.可穿戴型助力机器人技术研究[D].合肥: 中国科学技术大学, 2007. CHEN Feng. Research on the wearable power assist robot [D].Hefei: University of Science and Technology of China, 2007. (in Chinese) [74] 郑成闻,宋全军,佟丽娜,等.一种柔性双足压力检测装置与步态分析系统设计研究[J]. 传感技术学报, 2011, 23(12): 1704-1708. ZHENG Cheng-wen, SONG Quan-jun, TONG Li-na,et al. Research on the design of a flexible biped plantar pressure measurement device and gait analysis system [J]. Journal of Sensors and Actuators, 2011, 23(12):1704-1708. (in Chinese) [75] 黄瑞. 基于虚拟样机技术的PRMI外骨骼机器人步态仿真研究[D]. 成都: 电子科技大学, 2013. HUANG Rui. Gait simulation of PMRI exoskeleton based on virtual prototype [D].Chengdu: University of Electronic Science and Technology of China, 2013. (in Chinese) [76] Steger J R. A design and control methodology for human exoskeletons [D]. Berkeley: University of California, 2006. [77] Winter A. Biomechanical data resources [EB/OL]. [1999-07-11]. http:∥guardian.curtin.edu.au/org/data/. [78] Kirtley C. CGA normative gait database [EB/OL]. [1999-07-11]. http:∥guardian.curtin. edu. au/cga/data/. [79] Linskell J. CGA normative gait database [EB/OL]. [1999-07-11]. http:∥guardian. curtin.edu.au/cga/data/. [80] Zoss A B, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX) [J]. IEEE/ASME Transactionsw on Mechatronics, 2006, 11(2): 128-138. [81] Michael H. Physiological strain due to load carrying [J]. European Journal of Applied Physiology , 1990, 61(3/4):237-245. [82] Vanderborght B, Albu-Schaeffer A, Bicchi A,et al. Variable impedance actuators: a review [J]. Robotics and Autonomous Systems, 2013, 61(12): 1601-1614. [83] Vallery H, Veneman J, Van Asseldonk E, et al. Compliant actuation of rehabilitation robots: benefits and limitations of series elastic actuators [J]. IEEE Robotics & Automation Magazine, 2008, 15(3): 60-69. [84] 高羽翯. 外骨骼助力机器人的动力学分析与结构优化设计[D]. 北京: 北京理工大学, 2012. GAO Yu-he. Dynamics analysis and structure design of the exoskeleton robot [D].Beijing: Beijing Institute of Technology, 2012.(in Chinese) [85] Stephen C J, Marei X O, Brian J M. Biomimetic mechanical joint: US, US20110214524A1 [P]. 2011-09-08. [86] Stephen C J, Marc O. Contact displacement actuator system: US, US20090210093A1 [P]. 2009-10-20. [87] Kazerooni H, Harding N H, Angold R. Lower extremity exoskeleton: US, US7947004B2 [P]. 2011-05-24. [88] Russdon A, Adam B Z, Jon W B, et al. Hip and knee actuation systems for lower limb orthotic devices: US, US20110166489A1[P]. 2011-06-07. [89] Papini G P R, Avizzano C A. Transparent force control for body extender[C]∥IEEE International Symposium on Robot and Human Interactive Communication. Paris, France: IEEE,2012: 138-143. [90] Strausser K A. Development of a human machine interface for a wearable exoskeleton for users with spinal cord injury [D]. Berkeley: University of California, 2011. [91] Yamamoto K I. Stand alone wearable power assisting suit- sensing and control systems[C]∥IEEE International Workshop on Robot and Human Interactive Communication. Roma: IEEE,2004: 661-666. [92] Alan T A, Robert J D, Arnar F L, et al. Biologically inspired soft exosuit [C]∥IEEE International Conference on Rehabilitation Robotics. Washington: IEEE, 2013: 6650455. [93] Kazerooni H, Racine J L, Huang L, et al. On the control of the Berkeley lower extremity exoskeleton (BLEEX) [C]∥IEEE International Conference on Robotics and Automation.Barcelona, Spain: IEEE, 2005: 4353-4360. [94] Kazerooni H, Chu A, Steger R. That which does not stabilize, will only make us stronger [J]. International Journal of Robotics Research, 2007, 26(1): 75-89. [95] Asbeck A T, Rossi S M M D, Holt K G, et al. A biologically inspired soft exosuit for walking assistance [J]. International Journal of Robotics Research, 2015, 34(6): 744-762. [96] Kazerooni H, Steger R, Huang L. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX) [J]. ASME International Mechanical Engineering Congress & Exposition, 2006, 25(5/6): 561-573. [97] Kawamoto H, Taal S, Niniss H, et al. Voluntary motion support control of robot suit hal triggered by bioelectrical signal for hemiplegia [C]∥IEEE Engineering in Medicine and Biology Society Conference Proceedings.Buenos Aires, Argentina:IEEE, 2010: 462-466. [98] Tsukahara A, Kawanishi R, Hasegawa Y, et al. Sit-to-stand and standto-sit transfer support for complete paraplegic patients with robot suit HAL [J]. Advanced Robotics, 2010, 24 (11): 1615-1638. [99] Ronsse R, Lenzi T, Vitiello N, et al. Oscillator-based assistance of cyclical movements: model-based and model-free approaches [J]. Medical & Biological Engineering & Computing, 2011, 49(10): 1173-1185. [100] Sylos-Labini F S, La Scaleia V ,D’Avella A, et al. EMG patterns during assisted walking in the exoskeleton [J]. Frontiers in Human Neuroscience, 2014, 8: 1-12. |
[1] | SONG Jiyuan, ZHU Aibin, TU Yao, ZHANG Jialin, ZHANG Yulin. Design and Features of Exoskeleton Assisting Individual-Soldier Rescue [J]. Acta Armamentarii, 2022, 43(9): 2037-2047. |
[2] | MA Chunsheng, YIN Xiaoqin, MA Zhendong, MI Wenbo. Axis Self-adaptive Design and Dimensional Synthesis of Knee Joint of Lower Limb Exoskeleton [J]. Acta Armamentarii, 2022, 43(3): 653-660. |
[3] | LIU Yali, SONG Qiuzhi, ZHAO Mingsheng, ZHOU Nengbing, LIU Yue. The Four-stage Assisted Technology of Flexible Ankle Exoskeleton Robot Based on Force and Position Hybrid Control [J]. Acta Armamentarii, 2021, 42(12): 2722-2730. |
[4] | CHEN Jianhua, LI Ye, WANG Qi, MU Xihui. Research on Impedance Self-adjusting Control of Lower Extremity Exoskeleton during Support Phase Based onHuman Motion Ability [J]. Acta Armamentarii, 2020, 41(6): 1201-1209. |
[5] | QIAN Qian, ZHANG Aihua, SUN Yixia. Event Triggered Adaptive Robust Trajectory Tracking Control for Multi-joint Manipulators [J]. Acta Armamentarii, 2019, 40(8): 1732-1739. |
[6] | LI Dian-qi, DUAN Yong. Implementation of Active Disturbance Rejection Control of Robot by Tracking Differentiator [J]. Acta Armamentarii, 2016, 37(9): 1721-1729. |
[7] | MENG Ke-zi, ZHOU Di. H∞ Guidance Law Accounting for Dynamics of Missile Autopilot [J]. Acta Armamentarii, 2016, 37(7): 1194-1202. |
[8] | WANG Jie, XIONG Zhi, XING Li, DAI Yi-jie, HUA Bing, LIU Jian-ye. Online Calibration of IMU errors of Inertial Navigation System Based on Innovation-based Adaptive Filtering [J]. Acta Armamentarii, 2016, 37(7): 1203-1213. |
[9] | ZHANG Fu-bin, MA Peng, WANG Zhi-hui. SINS/DVL Integrated Navigation Algorithm Based on Transversal Coordinate Frame in Polar Region [J]. Acta Armamentarii, 2016, 37(7): 1229-1235. |
[10] | YU Xiao-ting, YU Feng, HE Zhen, XIONG Zhi, WANG Zhen-yu. Virtual Sliding Mode Control-based Attitude Estimation for Non-cooperative Spacecraft [J]. Acta Armamentarii, 2016, 37(7): 1282-1290. |
[11] | DUAN Mei-jun, ZHOU Di. A Guidance Law with Finite Time under Control Variable Constraint [J]. Acta Armamentarii, 2016, 37(6): 1030-1037. |
[12] | JIN Ying-lian, REN Jie, FENG Wei-bo, LI Jian-jun, WANG Bin-rui. Gait Analysis of an Inchworm-like Robot Climbing on Curved Surface and CPG-based Planning [J]. Acta Armamentarii, 2016, 37(6): 1104-1110. |
[13] | CHEN Chen, MA Guang-fu, SUN Yan-chao, LI Chuan-jiang. Recursive Sliding Mode Control for Hypersonic Vehicle Based on Nonlinear Disturbance Observer [J]. Acta Armamentarii, 2016, 37(5): 840-850. |
[14] | FENG Ka-li, LI An, QIN Fang-jun, LI Feng. Temperature Error Compensation Method Based on Adaptive Neuro Fuzzy Inference for Fiber-optic Gyro [J]. Acta Armamentarii, 2016, 37(4): 641-647. |
[15] | ZHANG Chun-yan, SONG Jian-mei, HOU Bo, ZHANG Min-qiang. Cooperative Guidance Law with Impact Angle and Impact Time Constraints for Networked Missiles [J]. Acta Armamentarii, 2016, 37(3): 431-438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||