
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (8): 240987-.doi: 10.12382/bgxb.2024.0987
Previous Articles Next Articles
HUANG Peiji1, PENG Weiwen1, LENG Chunjiang1, ZHANG Qing2, ZHONG Wei2,*(
)
Received:2024-10-24
Online:2025-08-28
Contact:
ZHONG Wei
HUANG Peiji, PENG Weiwen, LENG Chunjiang, ZHANG Qing, ZHONG Wei. Rapid Prediction of Blast Loading in Dense Urban Building Complex Based on Neural Networks[J]. Acta Armamentarii, 2025, 46(8): 240987-.
Add to citation manager EndNote|Ris|BibTeX
| 测点编号 | x | y | z |
|---|---|---|---|
| T1 | 0.30 | 1.1 | 0.105 |
| T11 | -0.30 | 1.0 | 0.075 |
| T12 | 1.26 | 1.0 | 0.075 |
Table 1 Coordinates of three measuring points of interest m
| 测点编号 | x | y | z |
|---|---|---|---|
| T1 | 0.30 | 1.1 | 0.105 |
| T11 | -0.30 | 1.0 | 0.075 |
| T12 | 1.26 | 1.0 | 0.075 |
| A/kPa | B/kPa | R1 | R2 |
|---|---|---|---|
| 3.737×108 | 3.737×106 | 4.15 | 0.9 |
| λ | E/(kJ·m-3) | ρ0/(kg·m-3) | |
| 0.35 | 6.0×106 | 1 630 |
Table 2 Values of empirical constants
| A/kPa | B/kPa | R1 | R2 |
|---|---|---|---|
| 3.737×108 | 3.737×106 | 4.15 | 0.9 |
| λ | E/(kJ·m-3) | ρ0/(kg·m-3) | |
| 0.35 | 6.0×106 | 1 630 |
| 参数 | 数值 |
|---|---|
| TNT爆源尺寸/g | 4,8,12,16,20,24,28,32 |
| 爆源位置/m | 爆源1(0.478,0.35),爆源2(0.678,0.35),爆源3(0.878,0.35),爆源4(0.478,0.75),爆源5 (0.278,0.75),爆源6 (0.078,0.75),爆源7(0.180,0.10),爆源8(0.800,1.10),爆源9(-0.150,1.10),爆源10(-0.150,0.30) |
Table 3 Options for coordinates of explosion sources and measuring points
| 参数 | 数值 |
|---|---|
| TNT爆源尺寸/g | 4,8,12,16,20,24,28,32 |
| 爆源位置/m | 爆源1(0.478,0.35),爆源2(0.678,0.35),爆源3(0.878,0.35),爆源4(0.478,0.75),爆源5 (0.278,0.75),爆源6 (0.078,0.75),爆源7(0.180,0.10),爆源8(0.800,1.10),爆源9(-0.150,1.10),爆源10(-0.150,0.30) |
| 参数 | 数值 |
|---|---|
| 隐藏层层数 | [2,3,4,5] |
| 隐藏层神经元个数 | [500,1000] |
| 激活函数 | ReLU(输出层为Linear) |
| 损失函数 | MAE |
| 优化器 | AdaGrad |
| 学习率 | 0.1 (每训练200次,衰减1/2) |
| 训练迭代次数 | 1000 |
| 批量大小 | 100 |
| Dropout率 | 0.3 |
Table 4 Summary of model parameter options
| 参数 | 数值 |
|---|---|
| 隐藏层层数 | [2,3,4,5] |
| 隐藏层神经元个数 | [500,1000] |
| 激活函数 | ReLU(输出层为Linear) |
| 损失函数 | MAE |
| 优化器 | AdaGrad |
| 学习率 | 0.1 (每训练200次,衰减1/2) |
| 训练迭代次数 | 1000 |
| 批量大小 | 100 |
| Dropout率 | 0.3 |
| 隐藏层结构 | 训练 pMAE/kPa | 验证 pMAE/kPa | 验证 e/% | 验证 R2 |
|---|---|---|---|---|
| 500-500 | 781.408 | 767.054 | 49.04 | 0.001 9 |
| 500-1000-500 | 672.423 | 683.698 | 27.09 | 0.0910 |
| 500-1000-1000-500 | 12.722 | 33.215 | 19.11 | 0.9977 |
| 500-1000-1000-1000-500 | 11.623 | 27.682 | 15.62 | 0.9996 |
Table 5 Comparison of evaluation metrics for different hidden layer architectures
| 隐藏层结构 | 训练 pMAE/kPa | 验证 pMAE/kPa | 验证 e/% | 验证 R2 |
|---|---|---|---|---|
| 500-500 | 781.408 | 767.054 | 49.04 | 0.001 9 |
| 500-1000-500 | 672.423 | 683.698 | 27.09 | 0.0910 |
| 500-1000-1000-500 | 12.722 | 33.215 | 19.11 | 0.9977 |
| 500-1000-1000-1000-500 | 11.623 | 27.682 | 15.62 | 0.9996 |
| 是否对超压峰值 取对数 | 训练 pMAE/kPa | 验证 pMAE/kPa | 验证 e/% | 验证 R2 |
|---|---|---|---|---|
| 否 | 12.722 | 33.215 | 19.11 | 0.9977 |
| 是 | 371.964 | 413.306 | 7.10 | 0.5387 |
Table 6 Comparison of evaluation metrics for logarithmic processing of peak overpressure
| 是否对超压峰值 取对数 | 训练 pMAE/kPa | 验证 pMAE/kPa | 验证 e/% | 验证 R2 |
|---|---|---|---|---|
| 否 | 12.722 | 33.215 | 19.11 | 0.9977 |
| 是 | 371.964 | 413.306 | 7.10 | 0.5387 |
| 单个算例 训练测点数量 | 训练 pMAE/kPa | 验证 pMAE/kPa | 验证 e/% | 验证 R2 |
|---|---|---|---|---|
| 300 | 739.596 | 746.616 | 12.79 | 0.0046 |
| 500 | 760.850 | 731.538 | 10.61 | 0.0100 |
| 800 | 647.787 | 696.221 | 8.95 | 0.0451 |
| 1000 | 644.602 | 638.197 | 8.18 | 0.1647 |
| 1587 | 371.964 | 413.306 | 7.10 | 0.5387 |
Table 7 Comparison of evaluation metrics for different numbers of training points in an example
| 单个算例 训练测点数量 | 训练 pMAE/kPa | 验证 pMAE/kPa | 验证 e/% | 验证 R2 |
|---|---|---|---|---|
| 300 | 739.596 | 746.616 | 12.79 | 0.0046 |
| 500 | 760.850 | 731.538 | 10.61 | 0.0100 |
| 800 | 647.787 | 696.221 | 8.95 | 0.0451 |
| 1000 | 644.602 | 638.197 | 8.18 | 0.1647 |
| 1587 | 371.964 | 413.306 | 7.10 | 0.5387 |
| 训练数据集 | 验证数据集 | pMAE/kPa | e/% | R2 |
|---|---|---|---|---|
| 全部测点 | 全部测点 | 413.306 | 7.10 | 0.5387 |
| 禁区外测点 | 3.638 | 6.95 | 0.9897 | |
| 禁区内测点 | 4746.238 | 8.77 | 0.5373 | |
| 禁区外测点 | 禁区外测点 | 4.530 | 7.82 | 0.9803 |
| 禁区内测点 | 禁区内测点 | 2846.708 | 9.92 | 0.8213 |
Table 8 The impact of exclusion zone division on model prediction effect
| 训练数据集 | 验证数据集 | pMAE/kPa | e/% | R2 |
|---|---|---|---|---|
| 全部测点 | 全部测点 | 413.306 | 7.10 | 0.5387 |
| 禁区外测点 | 3.638 | 6.95 | 0.9897 | |
| 禁区内测点 | 4746.238 | 8.77 | 0.5373 | |
| 禁区外测点 | 禁区外测点 | 4.530 | 7.82 | 0.9803 |
| 禁区内测点 | 禁区内测点 | 2846.708 | 9.92 | 0.8213 |
| 训练测点数据 | 测试测点数据 | pMAE/kPa | e/% | R2 |
|---|---|---|---|---|
| 禁区外 | 禁区外 | 4.101 | 4.14 | 0.9842 |
| 禁区内 | 禁区内 | 1498.396 | 8.02 | 0.9450 |
| 全部测点数据 | 全部测点数据 | 154.166 | 4.53 | 0.9452 |
Table 9 Test performance evaluation metrics results
| 训练测点数据 | 测试测点数据 | pMAE/kPa | e/% | R2 |
|---|---|---|---|---|
| 禁区外 | 禁区外 | 4.101 | 4.14 | 0.9842 |
| 禁区内 | 禁区内 | 1498.396 | 8.02 | 0.9450 |
| 全部测点数据 | 全部测点数据 | 154.166 | 4.53 | 0.9452 |
| 超压峰值 幅度范 围/kPa | 样本 数量 | 位于相应误差e范围的样本百分比/% | ||||
|---|---|---|---|---|---|---|
| [0,5) | [5,10) | [10,30) | [30,∞) | [0,10] | ||
| [0,25) | 9 724 | 75.85 | 18.05 | 5.70 | 0.40 | 93.90 |
| [25,50) | 5647 | 78.57 | 15.99 | 4.82 | 0.62 | 94.56 |
| [50,100) | 3 671 | 76.14 | 16.44 | 6.59 | 0.63 | 92.58 |
| [100,200) | 2 157 | 66.11 | 23.55 | 9.36 | 0.97 | 89.66 |
| [200,∞) | 4 193 | 48.82 | 29.12 | 19.94 | 2.12 | 77.94 |
Table 10 Error distributions in different overpressure ranges
| 超压峰值 幅度范 围/kPa | 样本 数量 | 位于相应误差e范围的样本百分比/% | ||||
|---|---|---|---|---|---|---|
| [0,5) | [5,10) | [10,30) | [30,∞) | [0,10] | ||
| [0,25) | 9 724 | 75.85 | 18.05 | 5.70 | 0.40 | 93.90 |
| [25,50) | 5647 | 78.57 | 15.99 | 4.82 | 0.62 | 94.56 |
| [50,100) | 3 671 | 76.14 | 16.44 | 6.59 | 0.63 | 92.58 |
| [100,200) | 2 157 | 66.11 | 23.55 | 9.36 | 0.97 | 89.66 |
| [200,∞) | 4 193 | 48.82 | 29.12 | 19.94 | 2.12 | 77.94 |
| [1] |
|
| [2] |
曹涛, 孙浩, 周游, 等. 近地爆炸冲击波传播特性数值模拟与应用[J]. 兵器装备工程学报, 2020, 41(12):187-191.
|
|
|
|
| [3] |
张云峰, 陈博, 魏欣, 等. 空气自由场爆炸冲击波数值建模及应用[J]. 爆炸与冲击, 2023, 43(11):114202.
|
|
|
|
| [4] |
张晓颖, 李胜杰, 李志强. 爆炸载荷作用下夹层玻璃动态响应的数值模拟[J]. 兵工学报, 2018, 39(7):1379-1388.
doi: 10.3969/j.issn.1000-1093.2018.07.016 |
|
|
|
| [5] |
赵海涛, 王成. 空中爆炸问题的高精度数值模拟研究[J]. 兵工学报, 2013, 34(12):1536-1546.
doi: 10.3969/j.issn.1000-1093.2013.12.008 |
|
|
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
杨森. 城市建筑群爆炸荷载预测及灾害效应快速评估[D]. 天津: 天津大学, 2021.
|
|
|
|
| [15] |
陈梓薇, 王仲琦, 曾令辉. 基于BP神经网络的爆炸用激波管峰值压力预测方法[J]. 爆炸与冲击, 2024, 44(5):054101.
|
|
|
|
| [16] |
|
| [17] |
|
| [18] |
徐永康, 薛琨. 基于人工神经网络算法的多相云雾爆轰毁伤效应预测模型[J]. 兵工学报, 2024, 45(6):1889-1905.
doi: 10.12382/bgxb.2023.0094 |
|
doi: 10.12382/bgxb.2023.0094 |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [1] | CHEN Changfa, WU Jun’an, GUO Rui, CUI Hao, YAN Shuaiyin, ZHOU Hao. Thickness Equivalence Model Based on Serial Neural Network for Explosion Resistance of Radome [J]. Acta Armamentarii, 2025, 46(9): 241001-. |
| [2] | WANG Yang, FENG Yongxin, QIAN Bo, SONG Bixue. Kurtosis-based Spectrum Sensing Method for Wireless Signals [J]. Acta Armamentarii, 2025, 46(7): 240441-. |
| [3] | QIN Taotao, JI Siyuan, LEI Lin, ZHENG Zhanfeng. Non-parametric Modelling and Muzzle Velocity Prediction of Multi-stage Induction Coilgun based on PSO-RNN Algorithm [J]. Acta Armamentarii, 2025, 46(7): 240616-. |
| [4] | GONG Shilong, DANG Jianjun, LI Shaoxing, HUANG Chuang. Optimization Design Method of the Supercavitating Projectile Based on BP Neural Network [J]. Acta Armamentarii, 2025, 46(5): 240496-. |
| [5] | LIU Xinhao, CHEN Bin, YING Wenjian, LI Peitao, WU Shiqian. Multi-scale Feature Interactive Image Dehazing Algorithm Based on Hybrid Architecture [J]. Acta Armamentarii, 2025, 46(5): 240861-. |
| [6] | NAN Wenjiang, YAN Xunliang, YANG Yuxuan, WANG Peichen. Rapid Planning of Longitudinal-lateral Comprehensive Control Reentry Gliding Trajectory Considering Time Constraints [J]. Acta Armamentarii, 2025, 46(3): 240154-. |
| [7] | NING Jianguo, WANG Qi, LI Jianqiao. ANN-based Prediction Model for the Initial Velocity of Fragments in a Triangular Prism Directional Charge Structure [J]. Acta Armamentarii, 2025, 46(3): 240346-. |
| [8] | WANG Yimin, YUAN Shusen, LIN Darui, YANG Guolai. Nonlinear Sliding Mode Control Based on Neural Network Compensation for Tank All-electric Bidirectional Stabilizers [J]. Acta Armamentarii, 2025, 46(3): 240421-. |
| [9] | LI Yingshun, YU Ang, LI Mao, HE Zhe, LIU Shiming. Fault Diagnosis of Armored Vehicle Engine Based on KLDA-IDBO-BP [J]. Acta Armamentarii, 2025, 46(3): 240083-. |
| [10] | SU Zhengyu, YANG Baosheng, YANG Jing, TANG Jingnan, JIANG Yi, DENG Yueguang. A CNN-SVM-based Adapter Drop Point Prediction Algorithm [J]. Acta Armamentarii, 2025, 46(2): 240016-. |
| [11] | ZHANG Qiyue, LIU Yan, YAN Junbo, XU Yingliang, WANG Baichuan, HUANG Fenglei. Dynamic Response of UHPFRC Beams with Different Strengths under Blast Loading [J]. Acta Armamentarii, 2025, 46(2): 240390-. |
| [12] | JIANG Haojie, PENG Yong, SUN Yuyan, WANG Ziguo, XU Jiapei. Explosive Damage Law and Rapid Calculation Model for RC Bridge Piers [J]. Acta Armamentarii, 2024, 45(S2): 305-316. |
| [13] | LIU Kunlong, WANG Hu, LIU Xiaoqiang, NIU Shuaixu, HUANG Yi, FU Qi, ZHAO Tao. Illumination Perception and Feature Enhancement Network for RGB-T Semantic Segmentation [J]. Acta Armamentarii, 2024, 45(S1): 219-230. |
| [14] | WANG Yeru, YANG Geng, LIU Shu, XU Xiao, CHEN Huajie, QIN Feiwei, XU Huajie. GCN-based Detection of Occluded Key Parts of Vehicle Target [J]. Acta Armamentarii, 2024, 45(S1): 242-251. |
| [15] | XIA Huanxiong, LI Kang, GAO Feng, LIU Jianhua, AO Xiaohui. Intelligent Optimization for Forming Quality of Melt-cast Explosives Based on the Evolution Characteristics of Solidification Front [J]. Acta Armamentarii, 2024, 45(9): 2936-2950. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||