Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (8): 240962-.doi: 10.12382/bgxb.2024.0962
Previous Articles Next Articles
WANG Shoutao1,2, JU Ao1,2, GUO Jingxian1,2, ZHAO Changqing1,2, ZHAO Chen3, CUI Yanchao4, SUN Ying1,2,*(), CHEN Li1,2
Received:
2024-10-15
Online:
2025-08-28
Contact:
SUN Ying
CLC Number:
WANG Shoutao, JU Ao, GUO Jingxian, ZHAO Changqing, ZHAO Chen, CUI Yanchao, SUN Ying, CHEN Li. Low-velocity Impact Properties of Electrically-heated Composites Containing Nickel-chromium Alloy Wires[J]. Acta Armamentarii, 2025, 46(8): 240962-.
Add to citation manager EndNote|Ris|BibTeX
试样组 | 并联间距/mm | 厚度/mm | 面密度/(kg·m-2) |
---|---|---|---|
EC1 | 6.67 | 2.23±0.02 | 3.702 |
EC2 | 4.00 | 2.23±0.02 | 3.698 |
EC3 | 2.86 | 2.23±0.02 | 3.683 |
GFRP | 2.08±0.01 | 3.575 |
Table 1 Measured values of sample parameters
试样组 | 并联间距/mm | 厚度/mm | 面密度/(kg·m-2) |
---|---|---|---|
EC1 | 6.67 | 2.23±0.02 | 3.702 |
EC2 | 4.00 | 2.23±0.02 | 3.698 |
EC3 | 2.86 | 2.23±0.02 | 3.683 |
GFRP | 2.08±0.01 | 3.575 |
试样组 | 60s内升温速率/ (℃·s-1) | 最高温度/ ℃ | 最低温度/ ℃ | 表面温差/ ℃ |
---|---|---|---|---|
EC1 | 0.803 | 113.4±2.5 | 87.2±2.0 | 26.2±1.8 |
EC2 | 0.685 | 106.1±2.1 | 94.6±1.6 | 11.5±0.6 |
EC3 | 0.573 | 97.7±1.2 | 91.6±1.1 | 6.1±0.4 |
Table 2 Temperature rise properties of electrically-heated samples
试样组 | 60s内升温速率/ (℃·s-1) | 最高温度/ ℃ | 最低温度/ ℃ | 表面温差/ ℃ |
---|---|---|---|---|
EC1 | 0.803 | 113.4±2.5 | 87.2±2.0 | 26.2±1.8 |
EC2 | 0.685 | 106.1±2.1 | 94.6±1.6 | 11.5±0.6 |
EC3 | 0.573 | 97.7±1.2 | 91.6±1.1 | 6.1±0.4 |
试样组 | F1/N | Fmax/N | ED/J | DE/mm | DD/mm | |||||
---|---|---|---|---|---|---|---|---|---|---|
测试值 | 变异系数/% | 测试值 | 变异系数/% | 测试值 | 变异系数/% | 测试值 | 变异系数/% | 测试值 | 变异系数/% | |
EC1 | 1647 | 3.05 | 2040 | 4.23 | 5.75 | 2.87 | 5.88 | 1.73 | 0.67 | 7.16 |
EC2 | 1780 | 3.23 | 1993 | 4.11 | 5.83 | 1.29 | 5.74 | 0.75 | 0.60 | 9.53 |
EC3 | 1621 | 8.49 | 2 071 | 1.75 | 5.94 | 3.16 | 5.73 | 1.23 | 0.63 | 8.29 |
GFRP | 1607 | 2.04 | 2 000 | 1.06 | 4.65 | 3.58 | 5.94 | 0.28 | 0.53 | 1.75 |
Table 3 Test impact properties of composite samples
试样组 | F1/N | Fmax/N | ED/J | DE/mm | DD/mm | |||||
---|---|---|---|---|---|---|---|---|---|---|
测试值 | 变异系数/% | 测试值 | 变异系数/% | 测试值 | 变异系数/% | 测试值 | 变异系数/% | 测试值 | 变异系数/% | |
EC1 | 1647 | 3.05 | 2040 | 4.23 | 5.75 | 2.87 | 5.88 | 1.73 | 0.67 | 7.16 |
EC2 | 1780 | 3.23 | 1993 | 4.11 | 5.83 | 1.29 | 5.74 | 0.75 | 0.60 | 9.53 |
EC3 | 1621 | 8.49 | 2 071 | 1.75 | 5.94 | 3.16 | 5.73 | 1.23 | 0.63 | 8.29 |
GFRP | 1607 | 2.04 | 2 000 | 1.06 | 4.65 | 3.58 | 5.94 | 0.28 | 0.53 | 1.75 |
试样组 | 60s内升温速率/ (℃·s-1) | 最高温度/ ℃ | 最低温度/ ℃ | 表面温差/ ℃ |
---|---|---|---|---|
EC1 | 0.777 | 111.6±2.5 | 72.4±2.0 | 39.2±3.5 |
EC2 | 0.652 | 100.7±1.8 | 78.0±1.7 | 22.7±1.4 |
EC3 | 0.562 | 97.3±1.3 | 84.8±1.2 | 12.5±1.3 |
Table 5 Electrothermal heating properties of samples after impact
试样组 | 60s内升温速率/ (℃·s-1) | 最高温度/ ℃ | 最低温度/ ℃ | 表面温差/ ℃ |
---|---|---|---|---|
EC1 | 0.777 | 111.6±2.5 | 72.4±2.0 | 39.2±3.5 |
EC2 | 0.652 | 100.7±1.8 | 78.0±1.7 | 22.7±1.4 |
EC3 | 0.562 | 97.3±1.3 | 84.8±1.2 | 12.5±1.3 |
试样组 | 压缩模量/GPa | 压缩强度/MPa | ||
---|---|---|---|---|
平均值 | 变异系数/% | 平均值 | 变异系数/% | |
EC1 | 10.87 | 7.85 | 131.78 | 4.62 |
EC2 | 11.28 | 1.12 | 140.38 | 3.41 |
EC3 | 11.40 | 1.28 | 124.35 | 3.78 |
GFRP | 10.68 | 1.87 | 133.49 | 3.85 |
Table 7 Average value of compression properties of samples
试样组 | 压缩模量/GPa | 压缩强度/MPa | ||
---|---|---|---|---|
平均值 | 变异系数/% | 平均值 | 变异系数/% | |
EC1 | 10.87 | 7.85 | 131.78 | 4.62 |
EC2 | 11.28 | 1.12 | 140.38 | 3.41 |
EC3 | 11.40 | 1.28 | 124.35 | 3.78 |
GFRP | 10.68 | 1.87 | 133.49 | 3.85 |
试样组 | 冲击后压缩模量/GPa | 冲击后压缩强度/MPa | ||||
---|---|---|---|---|---|---|
平均值 | 变异系 数/% | 模量保 留率/% | 平均值 | 变异系 数/% | 强度保 留率/% | |
EC1 | 9.64 | 5.25 | 88.73 | 131.31 | 1.71 | 99.64 |
EC2 | 10.06 | 6.54 | 89.14 | 139.06 | 3.08 | 99.06 |
EC3 | 11.08 | 9.85 | 97.19 | 118.09 | 8.18 | 94.97 |
GFRP | 9.31 | 4.79 | 87.20 | 132.22 | 2.03 | 99.04 |
Table 9 Average values of CAI properties of samples
试样组 | 冲击后压缩模量/GPa | 冲击后压缩强度/MPa | ||||
---|---|---|---|---|---|---|
平均值 | 变异系 数/% | 模量保 留率/% | 平均值 | 变异系 数/% | 强度保 留率/% | |
EC1 | 9.64 | 5.25 | 88.73 | 131.31 | 1.71 | 99.64 |
EC2 | 10.06 | 6.54 | 89.14 | 139.06 | 3.08 | 99.06 |
EC3 | 11.08 | 9.85 | 97.19 | 118.09 | 8.18 | 94.97 |
GFRP | 9.31 | 4.79 | 87.20 | 132.22 | 2.03 | 99.04 |
[14] |
冯亚, 孙颖, 崔艳超, 等. 含镍铬合金丝纬编电加热层复合材料的层间剪切性能[J]. 纺织学报, 2024, 45(4):89-95.
|
|
|
[15] |
戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8):1997-2004.
|
|
|
[16] |
谌广昌, 纪双英, 赵文明, 等. 直升机旋翼除冰系统加热垫试验研究[J]. 航空工程进展, 2019, 10(2):201-205.
|
|
|
[17] |
|
[18] |
|
[19] |
|
[20] |
Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event:ASTM D7136/D7136M-20[S]. West Conshohocken,PA,US: ASTM International, 2020.
|
[21] |
Standard test method for compressive residual strength properties of damaged polymer matrix composite plates:ASTM D7137/D7137M-17[S]. West Conshohocken,PA,US: ASTM International, 2017.
|
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
许静娴, 刘莉, 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016, 37(12):24-28.
|
|
|
[6] |
|
[7] |
|
[8] |
胡俊军, 王守涛, 孙颖, 等. 飞机防/除冰复合材料用电加热织物力学性能和电加热性能研究[J]. 兵工学报, 2025, 46(1):231200.
doi: 10.12382/bgxb.2023.1200 |
|
|
[9] |
居傲, 向卫宏, 崔艳超, 等. 基于定制纤维铺放工艺的电加热织物制备及其半球成型性能[J]. 纺织学报, 2024, 45(2):67-76.
|
|
|
[10] |
|
[11] |
|
[12] |
|
[13] |
路鹏程, 卞文熙, 安俊龙, 等. 电热作用对碳纤维增强树脂基复合材料层板冲击性能的影响[J]. 高分子材料科学与工程, 2023, 39(6):85-91.
|
|
|
[22] |
|
[23] |
|
[1] | JIN Yue, MIAO Fuxing. Impact Resistance and Energy Absorption Properties of CFRP Thin-walled Circular Tube with Porous Arrays [J]. Acta Armamentarii, 2025, 46(2): 240074-. |
[2] | HU Junjun, WANG Shoutao, SUN Ying, CUI Yanchao, ZHANG Hongliang, XIANG Weihong, CHEN Li. Mechanical and Electrical Heating Properties of Electrically Heated Fabric for Aircraft Anti-icing and De-icing Composites [J]. Acta Armamentarii, 2025, 46(1): 231200-. |
[3] | XU Ruixuan, XU Jiaxing, XUE Zhihua, LÜ Jieyao, YAN Qilong. Preparation and Thermal Decomposition Properties of Multi-scale Interface-Tunable Al/RDX Energetic Composites [J]. Acta Armamentarii, 2023, 44(3): 691-701. |
[4] | XIONG Wei, ZHANG Xianfeng, CHEN Haihua, LIU Chuang, TAN Mengting. Mesoscale Mechanism of the Shock Reaction of Al/Ni Powder Composites [J]. Acta Armamentarii, 2022, 43(8): 1823-1834. |
[5] | TIAN Chao, LI Zhipeng, DONG Yongxiang. Influence of Dwell on Anti-penetration Characteristics of Ceramic Composite Structure [J]. Acta Armamentarii, 2022, 43(5): 1144-1154. |
[6] | HUANG Xiancong, LAI Yue, LI Changsheng, LI Weiping, LONG Zhizhou, MA Tian. Thermo-oxidative Aging Behavior of Ultra-high Molecular Weight Polyethylene Fiber and Its Composites [J]. Acta Armamentarii, 2022, 43(12): 3211-3220. |
[7] | CHENG Yuansheng, XIE Jieke, LI Zhe, LIU Jun, ZHANG Pan. Damage Response Characteristics of UHMWPE/aluminum Foam Composite Sandwich Panel Subjected to CombinedBlast and Fragment Loadings [J]. Acta Armamentarii, 2021, 42(8): 1753-1762. |
[8] | LI Juying, LI Ying, WANG Ronghui, WEI Huazhen, KONG Guoqiang. Prediction of Warp Tensile Elasticity of 2.5D Woven Composites [J]. Acta Armamentarii, 2021, 42(7): 1516-1523. |
[9] | WANG Mengxin, CHEN Ruiying, WANG Jinxiang. Protective Properties of Porous Foam Aluminum Sandwich Composite Plate under the Combined Action of Fragment and ShockWave [J]. Acta Armamentarii, 2021, 42(5): 1041-1052. |
[10] | PENG Lumei, ZHOU Chengkang, ZHANG Zhiyong, LIU Dong. High-temperature Shock Resistance of Launch Container with Metal and Carbon Fiber Composite Structure [J]. Acta Armamentarii, 2021, 42(11): 2360-2367. |
[11] | JIN Bingyang, LIU Zheng, QIN Jikai. Two-stage Real-time Track Correlation Algorithm Based on Gray Correlation [J]. Acta Armamentarii, 2020, 41(7): 1330-1338. |
[12] | ZHU Zhaojun, QIANG Hongfu, WANG Zhejun. Analysis of Micro-mesoscopic Thermo-structural Characteristics of Component Materials of 4D Carbon/carbon Composites [J]. Acta Armamentarii, 2020, 41(5): 996-1006. |
[13] | LI Junbao, LI Weibing, WANG Heng, YUAN Shuqiang, WANG Xiaoming, HONG Xiaowen, XU Heyang. Propagation Properties of Shock Wave in Aluminum Powder/rubber Composites under Explosion Loading [J]. Acta Armamentarii, 2020, 41(10): 2001-2007. |
[14] | TONG Rui, KANG Jianshe, SUN Jian, YANG Wen, LI Baochen. Gear Performance Degradation Feature Extraction Based on Local Characteristic-scale Decomposition and Modified CompositeSpectrum Analysis [J]. Acta Armamentarii, 2019, 40(5): 1093-1102. |
[15] | YE Zhen-wei, YU Yong-gang. Experimental Research and Numerical Simulation of Coupling Combustion of Pulsed Jet and AP/HTPB Propellant [J]. Acta Armamentarii, 2018, 39(8): 1507-1514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||