[1] 王泽山, 何卫东, 徐复铭. 火药装药设计原理与技术[M]. 北京: 北京理工大学出版社, 2006: 250 -259. WANG Ze-shan, HE Wei-dong, XU Fu-ming. Design principle and technique of powder charge[M]. Beijing: Beijing Institute of Technology Press, 2006: 250 -259. (in Chinese) [2] 徐诚, 陆家鹏. 辅助药室采用整装液体药提高弹丸初速的实验和理论研究[J]. 兵工学报, 1996, 17(1):6 -11. XU Cheng, LU Jia-peng. An experimental and throretical investigation of increasing the muzzle velocity by means of auxiliary chamber with bulk-loaded liquid propellant[J]. Acta Armamentarii, 1996, 17(1):6 -11. ( in Chinese) [3] 萧忠良, 贺增弟, 刘幼平, 等. 变燃速发射药的原理与实现方法[J]. 火炸药学报, 2005, 28(1): 25 -27. XIAO Zhong-liang, HE Zeng-di, LIU You-ping, et al. Principle and realizable approach of variable burning rate propellant[ J].Chinese Journal of Explosive & Propellants, 2005, 28(1): 25 -27. ( in Chinese) [4] 张丽华, 贺增第, 萧忠良. 双层管状变燃速发射药的燃气生成规律[J]. 火炸药学报, 2006, 29(6): 65 -68. ZHANG Li-hua, HE Zeng-di, XIAO Zhong-liang. Gas generation rule about tubular gun propellant with two different burning rate layers[J]. Chinese Journal of Explosive & Propellants, 2006, 29(6): 65 -68. ( in Chinese) [5] 罗运军,李峰. 发射药燃烧控制技术的研究[J]. 燃烧科学与技术, 1998, 4(1): 24 -30. LUO Yun-jun, LI Feng. The propellant combustion contral technology[J]. Journal of Combustion Science and Technology, 1998,4(1): 24 -30. ( in Chinese) [6] 殷继刚. 多气孔球扁发射药结构、成型工艺及性能[D]. 南京: 南京理工大学, 2006:1 -9. YIN Ji-gang. Structure, forming and process performance of micropores oblate spherical powder[D]. Nanjing: Nanjing University of Science and Technology, 2006:1 -9. ( in Chinese) [7] 施伟. 高能高燃速发射药的探索研究[D]. 南京: 南京理工大学, 2008: 29 -33. SHI Wei. The investigation of high-energy and high burning-rate gun propellant[D]. Nanjing: Nanjing University of Science and Technology, 2008: 29 -33. ( in Chinese) [8] B觟hnlein-Mau覻J, Eberhardt A, Fischer T S. Foamed propellants [J]. Propellants, Explosives, Pyrotechnics, 2002, 27(3): 156-160. [9] B觟hnlein-Mau覻J, Kr觟ber H. Technology of foamed propellants [J]. Propellants, Explosives, Pyrotechnics, 2009, 34(3): 239-244. [10] Fischer T S, Bohnlein-Mauss J, Eberhardt A, et al. Burning characteristics of foamed polymer bonded propellants[C]//International Annual Conference-fraunhofer Institut Fur Chemische Technologie. Berghausen: Fraunhofer-Institut Fur Chemische Technologie, 2001: 107 -114. [11] Nalawade S P, Picchioni F, Janssen L. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications [ J]. Progress in Polymer Science,2006, 31(1): 19 -43. [12] 朱自强. 超临界流体技术: 原理和应用[M]. 北京:化学工业出版社, 2000: 1 -33. ZHU Zi-qiang. Supercritical fluid technology: principle and application[M]. Beijing: Chemical Industry Press, 2000: 1 -33.(in Chinese) [13] 韩布兴. 超临界流体科学与技术[M]. 北京:中国石化出版社, 2005: 2 -3. HAN Bu-xing. Supercritical fluid science and technology [M].Beijing: China Petrochemical Press, 2005: 2 -3. (in Chinese) [14] 余坚, 何嘉松. 超临界CO2 技术制备微孔聚合物中的基本问题[J]. 中国科学: B 辑, 2010, 40(1): 1 -15. YU Jian, HE Jia-song. Fundamental issues for microfoaming polymers with supercritical CO2 technology [ J]. Scienia Sinica Chimica: B, 2010, 40(1): 1 -15. (in Chinese) [15] Goel S K, Beckman E J. Generation of microcellular polymeric foams using supercritical carbon dioxide. I : effect of pressure and temperature on nucleation[J]. Polymer Engineering & Sci- ence, 1994, 34(14): 1137 -1147. [16] Colton J, Suh N P. Nucleation of microcellular foam: theory and practice[J]. Polymer Engineering & Science, 2004, 27(7):500 -503. [17] Colton J, Suh N P. The nucleation of microcellular thermoplastic foam with additives: part 玉: theoretical considerations[J]. Polymer Engineering & Science, 1987, 27(7): 485 -492. [18] Colton J, Suh N P. The nucleation of microcellular thermoplastic foam with additives: part域: experimental results and discussion[J].Polymer Engineering & Science, 1987, 27(7): 493 -499. [19] Tsioptsias C, Paraskevopoulos M, Christofilos D, et al. Polymeric hydrogels and supercritical fluids: the mechanism of hydrogel foaming[J]. Polymer, 2011,52(13): 2819 -2826. [20] Goel S K, Beckman E J. Nucleation and growth in microcellular materials: supercritical CO2 as foaming agent[J]. AIChE Journal, 1995, 41(2): 357 -367. [21] Okamoto K T. Microcellular processing[M]. Munich: Hanser Publishers, 2003:2 -35. [22] Sun Meiling, Ying Sanjiu. Sorption and diffusion of supercritical carbon dioxideinto nitrocellulose with or without cosolvents[J].Polymer-Plastics Technology and Engineering, 2012,51 (13):1346 -1350. [23] Muth O, Hirth T, Vogel H. Investigation of sorption and diffusion of supercritical carbon dioxide into poly ( vinyl chloride)[J]. The Journal of Supercritical Fluids, 2001, 19(3): 299 -306. [24] Berens A, Huvard G. Interaction of polymers with near-critical carbon dioxide[M]. Washington: Washington ACS Publications,1989:1 -26. [25] 陈西如. 超临界CO2 流体制备微孔球扁药工艺研究[D]. 南京: 南京理工大学, 2012:25 -29. CHEN Xi-ru. The process of microfoam oblate spherical propellants were prepared by supercritical CO2 fluids[D]. Nanjing:Nanjing University of Science and Technology, 2012:25 - 29.(in Chinese) [26] 陈西如, 应三九, 肖正刚. 超临界CO2 制备微孔球扁药的研究[J]. 兵工学报, 2012, 33(5): 534 -539. CHEN Xi-ru, YING San-jiu, XIAO Zheng-gang. Research on preparation of microfoam oblate spherical propellants by supercritical CO2 [J]. Acta Armamentarii, 2012, 33(5): 534 - 539.(in chinese) [27] Frolov Y V, Korostelev V. Combustion of gas-permeable porous systems[J]. Propellants, Explosives, Pyrotechnics, 1989, 14(4): 140 -149. [28] Chen X R, Xu F M, Ying S J. Research on burning characteristics of microfoam propellants[C]//Proceedings of the 26th International Symposium on Ballistics. Arlington: National Defense Industrial Association, 2011:680 -685. [29] 周彦煌, 陆欣, 刘东尧. 几种超高速射弹发射技术可行性的探索研究[J]. 弹道学报, 1996, 8(4): 8 -11. ZHOU Yan-huang, LU Xin, LIU Dong-yao. On the feasibility of several launching technology about hyper-velocity projectile[J].Journal of Ballistics, 1996, 8(4): 8 -11. (in Chinese) [30] 谭凤岗. 炮射超高速弹装药设计新概念[J]. 弹箭与制导学报,1995, 15(2): 29 -35. TAN Feng-gang. New concept of gun hypervelocity projectile charge design[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 1995, 15(2): 29 -35. (in Chinese) [31] Tompkins R E. Traveling charge gun firing using VHBR propellant, AD-A203307[R]. US: DTIC, 1989. [32] Kevin J, White D G. Closed chamber burning characteristics of new VHBR formulations, AD-A 161250[R]. US: DTIC, 1986. [33] Macdonald K A. Partitioned, fluid supported, high efficiency traveling charge for hyper-velocity guns: US, 4930421 [ P].1990-06-05. |