
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (9): 241057-.doi: 10.12382/bgxb.2024.1057
Previous Articles Next Articles
HUANG Wenyu1, XIONG Gang1,*(
), LI Longlong1, ZHANG Shuning2, YU Wenxian1
Received:2024-11-24
Online:2025-09-24
Contact:
XIONG Gang
CLC Number:
HUANG Wenyu, XIONG Gang, LI Longlong, ZHANG Shuning, YU Wenxian. UWBR Ground Target Recognition Method Based on Range Doppler Map and Adaptive Feature Selection Network[J]. Acta Armamentarii, 2025, 46(9): 241057-.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 信号采样率fs/GHz | 16 |
| 发射信号中心频率f0/GHz | 3.9 |
| 发射信号脉宽/ns | 0.65 |
| 天线主瓣宽度/(°) | 90 |
| 脉冲重复周期/ns | 75 |
| 相干积累指数 | 64 |
| 接收脉冲间隔Tr/ms | 1.25 |
| 测速范围/(m·s-1) | -15~15 |
| 测距范围/m | 2.5~15.0 |
| 分辨率Δr·Δv/(m2·s-1) | ≈0.28 |
Table 1 P440 radar parameter settings
| 参数 | 数值 |
|---|---|
| 信号采样率fs/GHz | 16 |
| 发射信号中心频率f0/GHz | 3.9 |
| 发射信号脉宽/ns | 0.65 |
| 天线主瓣宽度/(°) | 90 |
| 脉冲重复周期/ns | 75 |
| 相干积累指数 | 64 |
| 接收脉冲间隔Tr/ms | 1.25 |
| 测速范围/(m·s-1) | -15~15 |
| 测距范围/m | 2.5~15.0 |
| 分辨率Δr·Δv/(m2·s-1) | ≈0.28 |
| 实验条件 | 配置 |
|---|---|
| CPU GPU 操作系统 编程语言 深度学习架构 | Intel core i9-10900X NVIDIA RTX 2080Ti Ubuntu 20.21 Python 3.9.16 PyTorch 2.0.1 |
Table 2 Hardware and software configuration
| 实验条件 | 配置 |
|---|---|
| CPU GPU 操作系统 编程语言 深度学习架构 | Intel core i9-10900X NVIDIA RTX 2080Ti Ubuntu 20.21 Python 3.9.16 PyTorch 2.0.1 |
| 模型 | 准确率/% | 精确率/% | 召回率/% | F1Score | 参数量/103 |
|---|---|---|---|---|---|
| CBDN[ | 94.22 | 94.35 | 94.22 | 0.9424 | 52 |
| ICDN[ | 90.33 | 90.52 | 90.33 | 0.9035 | 72 |
| ResNet | 90.42 | 90.41 | 90.42 | 0.9143 | 52 |
| VGG | 89.23 | 89.11 | 89.23 | 0.8924 | 48 |
| DRSNet[ | 94.41 | 94.42 | 94.41 | 0.9410 | 84 |
| ConvNeXt[ | 93.33 | 93.42 | 93.33 | 0.9330 | 45 |
| RDM-AFSN-S | 97.86 | 97.89 | 97.86 | 0.9786 | 48 |
| RDM-AFSN-L | 98.50 | 98.51 | 98.50 | 0.9850 | 10300 |
Table 3 Comparison of evaluation indexes of each model test set
| 模型 | 准确率/% | 精确率/% | 召回率/% | F1Score | 参数量/103 |
|---|---|---|---|---|---|
| CBDN[ | 94.22 | 94.35 | 94.22 | 0.9424 | 52 |
| ICDN[ | 90.33 | 90.52 | 90.33 | 0.9035 | 72 |
| ResNet | 90.42 | 90.41 | 90.42 | 0.9143 | 52 |
| VGG | 89.23 | 89.11 | 89.23 | 0.8924 | 48 |
| DRSNet[ | 94.41 | 94.42 | 94.41 | 0.9410 | 84 |
| ConvNeXt[ | 93.33 | 93.42 | 93.33 | 0.9330 | 45 |
| RDM-AFSN-S | 97.86 | 97.89 | 97.86 | 0.9786 | 48 |
| RDM-AFSN-L | 98.50 | 98.51 | 98.50 | 0.9850 | 10300 |
| 模型 | 准确率/% | 精确率/% | 召回率/% | F1Score |
|---|---|---|---|---|
| CBDN[ | 92.68 | 93.64 | 89.01 | 0.9037 |
| ICDN[ | 91.90 | 90.05 | 91.56 | 0.8979 |
| DRSNet[ | 93.50 | 93.62 | 93.40 | 0.9340 |
| ConvNeXt[ | 93.53 | 92.12 | 93.54 | 0.9218 |
| RDM-AFSN-S | 95.66 | 94.99 | 95.42 | 0.9516 |
Table 4 2 types of targets+2 types of ground dataset indicator results
| 模型 | 准确率/% | 精确率/% | 召回率/% | F1Score |
|---|---|---|---|---|
| CBDN[ | 92.68 | 93.64 | 89.01 | 0.9037 |
| ICDN[ | 91.90 | 90.05 | 91.56 | 0.8979 |
| DRSNet[ | 93.50 | 93.62 | 93.40 | 0.9340 |
| ConvNeXt[ | 93.53 | 92.12 | 93.54 | 0.9218 |
| RDM-AFSN-S | 95.66 | 94.99 | 95.42 | 0.9516 |
| 模型 | 准确率/% | 精确率/% | 召回率/% | F1Score |
|---|---|---|---|---|
| CBDN[ | 92.45 | 92.60 | 92.45 | 0.9243 |
| ICDN[ | 85.45 | 85.70 | 85.45 | 0.8526 |
| DRSNet[ | 90.76 | 90.89 | 90.76 | 0.9072 |
| RDM-AFSN-S | 94.95 | 95.02 | 94.95 | 0.9495 |
Table 5 The ground moving target dataset indicator results
| 模型 | 准确率/% | 精确率/% | 召回率/% | F1Score |
|---|---|---|---|---|
| CBDN[ | 92.45 | 92.60 | 92.45 | 0.9243 |
| ICDN[ | 85.45 | 85.70 | 85.45 | 0.8526 |
| DRSNet[ | 90.76 | 90.89 | 90.76 | 0.9072 |
| RDM-AFSN-S | 94.95 | 95.02 | 94.95 | 0.9495 |
| ConvNeXt 网络 | CSTFM | 可偏移 卷积 | 空洞 卷积 | 准确 率/% | 精确 率/% | 召回 率/% | F1Score |
|---|---|---|---|---|---|---|---|
| √ | 93.33 | 93.42 | 93.33 | 0.9330 | |||
| √ | √ | 94.39 | 94.41 | 94.39 | 0.9439 | ||
| √ | √ | √ | 95.42 | 95.48 | 95.42 | 0.9543 | |
| √ | √ | √ | 96.64 | 96.65 | 96.64 | 0.9664 | |
| √ | √ | √ | √ | 97.86 | 97.89 | 97.86 | 0.9786 |
Table 6 Results of ablation experiment indicators
| ConvNeXt 网络 | CSTFM | 可偏移 卷积 | 空洞 卷积 | 准确 率/% | 精确 率/% | 召回 率/% | F1Score |
|---|---|---|---|---|---|---|---|
| √ | 93.33 | 93.42 | 93.33 | 0.9330 | |||
| √ | √ | 94.39 | 94.41 | 94.39 | 0.9439 | ||
| √ | √ | √ | 95.42 | 95.48 | 95.42 | 0.9543 | |
| √ | √ | √ | 96.64 | 96.65 | 96.64 | 0.9664 | |
| √ | √ | √ | √ | 97.86 | 97.89 | 97.86 | 0.9786 |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
周文, 郝新红, 董二娃, 等. 基于滑动多周期FFT的调频引信抗扫频干扰方法[J]. 兵工学报, 2023, 44(6):1744-1753.
doi: 10.12382/bgxb.2022.0119 |
|
doi: 10.12382/bgxb.2022.0119 |
|
| [8] |
杨瑾, 郝新红, 周文, 等. 基于异值检测及干扰样本归零的调频引信抗扫频干扰方法[J]. 探测与控制学报, 2023, 45(5):22-26.
|
|
|
|
| [9] |
刘冰, 郝新红, 周文, 等. 基于BAS-BPNN的调频无线电引信目标与扫频干扰识别方法[J]. 兵工学报, 2023, 44(8):2391-2403.
doi: 10.12382/bgxb.2022.0248 |
|
doi: 10.12382/bgxb.2022.0248 |
|
| [10] |
周文, 郝新红, 杨瑾, 等. 基于多尺度色散熵与支持向量机的调频引信扫频干扰信号识别方法[J]. 探测与控制学报, 2023, 45(6):21-26.
|
|
|
|
| [11] |
刘冰, 郝新红, 段俊法, 等. 基于经验模态分解特征的无线电引信抗扫频式干扰方法[J]. 北京理工大学学报, 2023, 43(12):1290-1297.
|
|
|
|
| [12] |
房安琪, 李蓉. 基于数据增强的侵彻引信准确层识别神经网络方法[J]. 探测与控制学报, 2022, 44(1):1-6.
|
|
|
|
| [13] |
李晓雄, 张淑宁, 赵惠昌, 等. 基于1 DC-CGAN和小波能量特征的引信小样本地形目标识别[J]. 兵工学报, 2022, 43(10):2545-2553.
|
|
doi: 10.12382/bgxb.2021.0505 |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
李龙龙. 变化场景下基于多特征融合的超宽带近程雷达目标识别[D]. 上海: 上海交通大学, 2023.
|
|
|
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [1] | HAN Yanwen, YAN Xiaopeng, GAO Xiaofeng, YI Guanghua, DAI Jian. Fuze Target Recognition Method Based on Motion Array Microwave Imaging and Multi-scale Deformable Convolutional Network [J]. Acta Armamentarii, 2025, 46(3): 240282-. |
| [2] | ZHOU Wen, HAO Xinhong, YANG Jin, DUAN Lefan. Response Characteristics of Frequency-modulated Continuous Wave Fuze under Dense Sweep Jamming [J]. Acta Armamentarii, 2024, 45(7): 2251-2259. |
| [3] | ZHAO Xin, JI Yongxiang, LUO Xibin, LIU Shefeng, NING Xiaolei. Computation Method for the Optimal Burst Height of Proximity Fuze Based on Improved Particle Swarm Optimization Algorithm [J]. Acta Armamentarii, 2021, 42(5): 924-929. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||