Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (7): 240441-.doi: 10.12382/bgxb.2024.0441
Previous Articles Next Articles
WANG Yang, FENG Yongxin*(), QIAN Bo, SONG Bixue
Received:
2024-06-05
Online:
2025-08-12
Contact:
FENG Yongxin
CLC Number:
WANG Yang, FENG Yongxin, QIAN Bo, SONG Bixue. Kurtosis-based Spectrum Sensing Method for Wireless Signals[J]. Acta Armamentarii, 2025, 46(7): 240441-.
Add to citation manager EndNote|Ris|BibTeX
调制信号 | 过采样率 | 扩频增益/dB | 伪码长度 |
---|---|---|---|
DSSS | 4 | 18.06 | 4096 |
FHSS | 4 | 18.06 | 4096 |
QPSK | 4 |
Table 1 Main parameters of target sensing signals
调制信号 | 过采样率 | 扩频增益/dB | 伪码长度 |
---|---|---|---|
DSSS | 4 | 18.06 | 4096 |
FHSS | 4 | 18.06 | 4096 |
QPSK | 4 |
数据集 | 样本总数 | 噪声参数 | 信噪比/dB | 样本尺寸 |
---|---|---|---|---|
训练集 | 19.2万 | v=1,3,5,∞ σ2=1 | -15~0 | 2×4096 |
测试集1 | 4.8万 | v=1,3,5,∞ σ2=1,σ2≤2 | -15~0 | 2×4096 2×1024 |
测试集2 | 4.8万 | v=1,3,5,∞ 0.5≤η<1 | -15~0 | 2×4096 |
Table 2 Main parameters of training and testing sets
数据集 | 样本总数 | 噪声参数 | 信噪比/dB | 样本尺寸 |
---|---|---|---|---|
训练集 | 19.2万 | v=1,3,5,∞ σ2=1 | -15~0 | 2×4096 |
测试集1 | 4.8万 | v=1,3,5,∞ σ2=1,σ2≤2 | -15~0 | 2×4096 2×1024 |
测试集2 | 4.8万 | v=1,3,5,∞ 0.5≤η<1 | -15~0 | 2×4096 |
优化器 | 学习率 | 权重衰减 | 训练次数 | 验证方法 | 早停策略 |
---|---|---|---|---|---|
Adam | 0.001 | 10-4 | 50 | 十折 交叉 | 是 |
Table 3 Network training parameters
优化器 | 学习率 | 权重衰减 | 训练次数 | 验证方法 | 早停策略 |
---|---|---|---|---|---|
Adam | 0.001 | 10-4 | 50 | 十折 交叉 | 是 |
模块名称 | 特征尺寸 | ||||
---|---|---|---|---|---|
1×8 | 1×16 | 1×32 | 1×64 | 1×128 | |
SSFF | 2 | 3 | |||
BSFF | 2 | 3 | |||
MSFF | 1 | 1 | 1 | 1 | 1 |
Table 4 Feature sizes of feature fusion module
模块名称 | 特征尺寸 | ||||
---|---|---|---|---|---|
1×8 | 1×16 | 1×32 | 1×64 | 1×128 | |
SSFF | 2 | 3 | |||
BSFF | 2 | 3 | |||
MSFF | 1 | 1 | 1 | 1 | 1 |
模块 名称 | 平均检测概率 | |||
---|---|---|---|---|
v→∞ SNR≤-12 | v→∞ SNR>-12 | v=3 SNR<-13 | v=3 SNR≥-13 | |
SSFF | 61.64 | 96.01 | 72.90 | 99.59 |
BSFF | 67.77 | 93.40 | 81.05 | 96.75 |
MSFF | 66.44 | 95.00 | 79.57 | 99.49 |
Table 5 Comparison of detection probabilities of different feature fusion modules %
模块 名称 | 平均检测概率 | |||
---|---|---|---|---|
v→∞ SNR≤-12 | v→∞ SNR>-12 | v=3 SNR<-13 | v=3 SNR≥-13 | |
SSFF | 61.64 | 96.01 | 72.90 | 99.59 |
BSFF | 67.77 | 93.40 | 81.05 | 96.75 |
MSFF | 66.44 | 95.00 | 79.57 | 99.49 |
数据集 | 样本总数/104 | 噪声参数 | 信噪比/dB | 样本尺寸 |
---|---|---|---|---|
训练集1 | 1.92 | v=∞ σ2=1 v=∞ σ2=1 | -15~0 | 2×4096 |
训练集2 | 9.6 |
Table 6 Main parameters of different numbers of training sets
数据集 | 样本总数/104 | 噪声参数 | 信噪比/dB | 样本尺寸 |
---|---|---|---|---|
训练集1 | 1.92 | v=∞ σ2=1 v=∞ σ2=1 | -15~0 | 2×4096 |
训练集2 | 9.6 |
名称 | 参数量 | 计算量 | 训练时长/ms | 推理时长/ms |
---|---|---|---|---|
本文方法 | 1.23×106 | 2.73×108 | 4491.11 | 853.33 |
SSCL | 1.07×106 | 2.09×108 | 4470.14 | 847.82 |
SSDNN | 1.11×105 | 2.98×107 | 4228.19 | 823.19 |
Table 7 Comparison of method complexity
名称 | 参数量 | 计算量 | 训练时长/ms | 推理时长/ms |
---|---|---|---|---|
本文方法 | 1.23×106 | 2.73×108 | 4491.11 | 853.33 |
SSCL | 1.07×106 | 2.09×108 | 4470.14 | 847.82 |
SSDNN | 1.11×105 | 2.98×107 | 4228.19 | 823.19 |
[1] |
张航领, 周顺勇, 胡琴, 等. 认知无线电频谱感知技术研究综述[J]. 无线电工程, 2024, 54(11):2527-2536.
|
|
|
[2] |
|
[3] |
|
[4] |
|
[5] |
doi: 10.1109/LSP.2019.2900165 |
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
何遵文, 侯帅, 张万成, 等. 通信特定辐射源识别的多特征融合分类方法[J]. 通信学报, 2021, 42(2):103-112.
doi: 10.11959/j.issn.1000-436x.2021028 |
doi: 10.11959/j.issn.1000-436x.2021028 |
|
[15] |
普运伟, 刘涛涛, 郭江, 等. 基于卷积神经网络和模糊函数主脊坐标变换的雷达辐射源信号识别[J]. 兵工学报, 2021, 42(8):1680-1689.
doi: 10.3969/j.issn.1000-1093.2021.08.012 |
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
王洋, 冯永新, 宋碧雪, 等. DP-DRCnet卷积神经网络信号调制识别算法[J]. 兵工学报, 2023, 44(2):545-555.
doi: 10.12382/bgxb.2021.0620 |
doi: 10.12382/bgxb.2021.0620 |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[1] | LIU Xinhao, CHEN Bin, YING Wenjian, LI Peitao, WU Shiqian. Multi-scale Feature Interactive Image Dehazing Algorithm Based on Hybrid Architecture [J]. Acta Armamentarii, 2025, 46(5): 240861-. |
[2] | SU Zhengyu, YANG Baosheng, YANG Jing, TANG Jingnan, JIANG Yi, DENG Yueguang. A CNN-SVM-based Adapter Drop Point Prediction Algorithm [J]. Acta Armamentarii, 2025, 46(2): 240016-. |
[3] | WANG Yeru, YANG Geng, LIU Shu, XU Xiao, CHEN Huajie, QIN Feiwei, XU Huajie. GCN-based Detection of Occluded Key Parts of Vehicle Target [J]. Acta Armamentarii, 2024, 45(S1): 242-251. |
[4] | LIU Kunlong, WANG Hu, LIU Xiaoqiang, NIU Shuaixu, HUANG Yi, FU Qi, ZHAO Tao. Illumination Perception and Feature Enhancement Network for RGB-T Semantic Segmentation [J]. Acta Armamentarii, 2024, 45(S1): 219-230. |
[5] | GUO Aiqiang, LI Tianpeng, ZHU Xi, GUAN Zhichao, LI Men, DONG Hongyu, GAO Xinbao. Smoke Screen Video Detection and Parameter Extraction Based on Convolutional Neural Network and Spatio-temporal Features [J]. Acta Armamentarii, 2024, 45(8): 2478-2486. |
[6] | YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network [J]. Acta Armamentarii, 2024, 45(7): 2128-2143. |
[7] | LIU Fang, LI Shiwei, LU Xi, GUO Ce’an. Prediction of Peak Overpressure of Underwater Cylindrical Charge Based on PSO-CNN-XGBoost [J]. Acta Armamentarii, 2024, 45(5): 1602-1612. |
[8] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[9] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[10] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[11] | HE Jincheng, HAN Yongcheng, ZHANG Wenwen, HE Weiji, CHEN Qian. True Color Low-Light Image Enhancement Based on Channel-Calibrated Convolution [J]. Acta Armamentarii, 2023, 44(6): 1643-1654. |
[12] | LIU Jia, LIU Hai’ou, CHEN Huiyan, MAO Feihong. Road Types Identification Method of Unmanned Tracked Vehicles Based on Fusion Features [J]. Acta Armamentarii, 2023, 44(5): 1267-1276. |
[13] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[14] | DING Bosheng, ZHANG Ruiheng, XU Lixin, CHEN Huiming. Sand-dust Image Restoration Using Gray Compensation and Feature Fusion [J]. Acta Armamentarii, 2023, 44(10): 3115-3126. |
[15] | JIAO Chuan-hai, LI Yong-cheng, XIE Kai, YANG Yun-fu. Wideband Compressed Blind Sensing without Reconstruction Based on Expectation Deviation and Generalized Likelihood RatioTest [J]. Acta Armamentarii, 2016, 37(10): 1837-1843. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||