Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (1): 231124-.doi: 10.12382/bgxb.2023.1124
Previous Articles Next Articles
FENG Yingbin, GUO Xiaozun*(), YAN Jiahua
Received:
2023-11-22
Online:
2025-01-25
Contact:
GUO Xiaozun
CLC Number:
FENG Yingbin, GUO Xiaozun, YAN Jiahua. Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism[J]. Acta Armamentarii, 2025, 46(1): 231124-.
Add to citation manager EndNote|Ris|BibTeX
配置 | 版本 |
---|---|
操作系统 | Windows 10 |
处理器 | Intel Xeon Sliver 4210 CPU @2.20GHz |
显卡 | NVIDIA Quadro RTX 4000 |
框架 | Pytorch 1.13.1 |
开发软件 | Pycharm 2020.3.12 |
开发语言 | Python 3.8.17 |
Table 1 Experimental environment configuration information
配置 | 版本 |
---|---|
操作系统 | Windows 10 |
处理器 | Intel Xeon Sliver 4210 CPU @2.20GHz |
显卡 | NVIDIA Quadro RTX 4000 |
框架 | Pytorch 1.13.1 |
开发软件 | Pycharm 2020.3.12 |
开发语言 | Python 3.8.17 |
编号 | 模型 | P/% | mAP50/% | mAP50-95/% | Par/106 | O/109 |
---|---|---|---|---|---|---|
1 | YOLOv8s | 44.8 | 33.0 | 18.6 | 11.2 | 28.5 |
2 | YOLOv8s+BPAN | 49.4 | 40.2 | 23.1 | 7.7 | 123.4 |
3 | YOLOv8s+BPAN+SIoU Loss | 50.1 | 40.9 | 23.4 | 7.7 | 123.4 |
4 | YOLOv8s+BPAN+EF_C2f | 51.2 | 41.8 | 23.8 | 6.2 | 105.4 |
5 | YOLOv8s+BPAN+SIoU Loss+EF_C2f | 51.7 | 42.1 | 24.3 | 6.2 | 105.4 |
Table 2 Performance test evaluation results of each improved method in ablation experiments
编号 | 模型 | P/% | mAP50/% | mAP50-95/% | Par/106 | O/109 |
---|---|---|---|---|---|---|
1 | YOLOv8s | 44.8 | 33.0 | 18.6 | 11.2 | 28.5 |
2 | YOLOv8s+BPAN | 49.4 | 40.2 | 23.1 | 7.7 | 123.4 |
3 | YOLOv8s+BPAN+SIoU Loss | 50.1 | 40.9 | 23.4 | 7.7 | 123.4 |
4 | YOLOv8s+BPAN+EF_C2f | 51.2 | 41.8 | 23.8 | 6.2 | 105.4 |
5 | YOLOv8s+BPAN+SIoU Loss+EF_C2f | 51.7 | 42.1 | 24.3 | 6.2 | 105.4 |
方法 | mAP50/% | mAP50-95/% | FPS |
---|---|---|---|
Faster-RCNN | 21.7 | 15.1 | 15 |
Cascade-RCNN | 31.9 | 16.1 | |
Light-RCNN | 30.8 | 16.5 | |
YOLOv3 | 32.1 | 17.5 | 31 |
YOLOv4 | 30.7 | 15.9 | 32 |
YOLOv5 | 31.5 | 16.8 | 121 |
YOLOv8 | 33.0 | 18.6 | 169 |
Ours | 42.1 | 24.3 | 28 |
Table 3 Comparison of the performance evaluation results of models in the experiment
方法 | mAP50/% | mAP50-95/% | FPS |
---|---|---|---|
Faster-RCNN | 21.7 | 15.1 | 15 |
Cascade-RCNN | 31.9 | 16.1 | |
Light-RCNN | 30.8 | 16.5 | |
YOLOv3 | 32.1 | 17.5 | 31 |
YOLOv4 | 30.7 | 15.9 | 32 |
YOLOv5 | 31.5 | 16.8 | 121 |
YOLOv8 | 33.0 | 18.6 | 169 |
Ours | 42.1 | 24.3 | 28 |
类别 | P/% | R/% | mAP50/% | mAP50-95/% |
---|---|---|---|---|
Pedestrian | 62.4 | 40.0 | 43.3 | 18.5 |
People | 60.5 | 26.8 | 31.5 | 12.4 |
Bicycle | 38.7 | 19.5 | 18.9 | 8.3 |
Car | 72.8 | 80.9 | 82.7 | 51.9 |
Van | 46.3 | 49.9 | 46.9 | 31.7 |
Truck | 44.7 | 49.5 | 43.1 | 28.8 |
Tricycle | 28.5 | 36.4 | 25.6 | 14.7 |
Awning-tricycle | 42.7 | 25.4 | 23.8 | 15.2 |
Bus | 68.7 | 56.3 | 62.3 | 43.3 |
Motor | 51.7 | 45.5 | 42.5 | 18.5 |
Table 4 Performance evaluation metrics of the proposed algorithm on VisDrone 2019 dataset
类别 | P/% | R/% | mAP50/% | mAP50-95/% |
---|---|---|---|---|
Pedestrian | 62.4 | 40.0 | 43.3 | 18.5 |
People | 60.5 | 26.8 | 31.5 | 12.4 |
Bicycle | 38.7 | 19.5 | 18.9 | 8.3 |
Car | 72.8 | 80.9 | 82.7 | 51.9 |
Van | 46.3 | 49.9 | 46.9 | 31.7 |
Truck | 44.7 | 49.5 | 43.1 | 28.8 |
Tricycle | 28.5 | 36.4 | 25.6 | 14.7 |
Awning-tricycle | 42.7 | 25.4 | 23.8 | 15.2 |
Bus | 68.7 | 56.3 | 62.3 | 43.3 |
Motor | 51.7 | 45.5 | 42.5 | 18.5 |
类别 | ||||
---|---|---|---|---|
Pedestrian | 13 | 74 | 24 | 42 |
People | 0 | 1 | 1 | 1 |
Bicycle | 0 | 0 | 0 | 1 |
Car | 39 | 44 | 10 | 8 |
Van | 0 | 4 | 0 | 1 |
Truck | 0 | 2 | 0 | 0 |
Tricycle | 2 | 4 | 0 | 0 |
Awning-tricycle | 1 | 1 | 0 | 0 |
Motor | 1 | 5 | 1 | 1 |
Table 5 Comparison of detected results of YOLOv8s algorithm and the proposed algorithm
类别 | ||||
---|---|---|---|---|
Pedestrian | 13 | 74 | 24 | 42 |
People | 0 | 1 | 1 | 1 |
Bicycle | 0 | 0 | 0 | 1 |
Car | 39 | 44 | 10 | 8 |
Van | 0 | 4 | 0 | 1 |
Truck | 0 | 2 | 0 | 0 |
Tricycle | 2 | 4 | 0 | 0 |
Awning-tricycle | 1 | 1 | 0 | 0 |
Motor | 1 | 5 | 1 | 1 |
[1] |
|
[2] |
|
[3] |
|
[4] |
惠康华, 杨卫, 刘浩翰, 等. 基于YOLOv5的增强多尺度目标检测方法[J]. 兵工学报, 2023, 44(9):2600-2610.
doi: 10.12382/bgxb.2022.1147 |
doi: 10.12382/bgxb.2022.1147 |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
王殿伟, 胡里晨, 房杰, 等. 基于改进Double-Head R-CNN的无人机航拍图像小目标检测算法[J]. 北京航空航天大学学报, 2024, 50(7):2141-2149.
|
|
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
张智, 易华挥, 郑锦. 聚焦小目标的航拍图像目标检测算法[J]. 电子学报, 2023, 51(4):944-955.
doi: 10.12263/DZXB.20220313 |
doi: 10.12263/DZXB.20220313 |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
冒国韬, 邓天民, 于楠晶. 基于多尺度分割注意力的无人机航拍图像目标检测算法[J]. 航空学报, 2023, 44(5):326738.
doi: 10.7527/S1000-6893.2021.26738 |
|
|
[26] |
李校林, 刘大东, 刘鑫满, 等. 改进YOLOv5的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2024, 60(11):204-214.
doi: 10.3778/j.issn.1002-8331.2307-0171 |
doi: 10.3778/j.issn.1002-8331.2307-0171 |
|
[27] |
|
[28] |
于博文, 吕明. 改进的YOLOv3算法及其在军事目标检测中的应用[J]. 兵工学报, 2022, 43(2):345-354.
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
|
[29] |
奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44(7):327106.
doi: 10.7527/S1000-6893.2022.27106 |
|
[1] | XING Wensong, LONG Zhenhai, HUANG Jie. Analysis of Low-cycle Torsional Fatigue Properties of 42CrMo Based on Hysteresis Loop Data [J]. Acta Armamentarii, 2025, 46(1): 231163-. |
[2] | QIAO Xinbo, ZHAO Yongqiang, ZHANG Jingcheng. Object Tracking Based on Spatial-polarization Aliasing for Infrared Polarization Video [J]. Acta Armamentarii, 2024, 45(9): 3274-3287. |
[3] | ZHA Bingting, XU Guangbo, QIN Jianxin, ZHANG He. Time Discrimination Method of Multi-transmitter and Multi-receiver Circumferential Laser Fuze [J]. Acta Armamentarii, 2024, 45(11): 4145-4154. |
[4] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[5] | ZHANG Bin, LU Hongyi, LIU Shun, SANG Doudou, YANG Yucheng. Feature Extraction and Region Growing Algorithm for Processing CT Scans of Engine Parts [J]. Acta Armamentarii, 2023, 44(4): 1171-1180. |
[6] | WANG Zhong-mei, YANG Xiao-mei , GU Xing-fa. Small Target Detection in a Single Infrared Image Based on RPCA [J]. Acta Armamentarii, 2016, 37(9): 1753-1760. |
[7] | GUO Xiao-tao, WANG Xing, ZHOU Dong-qing. Individual Communication Transmitter Identification Based on Dempster-Shafer Evidence Theory [J]. Acta Armamentarii, 2016, 37(10): 1844-1851. |
[8] | LIU Hong, CAO Ying, LONG Teng-wu. Feature Extraction Method for Tolerance Circuit Fault Diagnosis Based on Improved Basic Particle Swarm OptimizationAlgorithm [J]. Acta Armamentarii, 2015, 36(8): 1494-1501. |
[9] | LI Cheng, LI Jian-xun, TONG Zhong-xiang, JIA Lin-tong, ZHANG Zhi-bo. Research on Partial Image Recognition and Tracking in Infrared Imaging Terminal Guidance [J]. Acta Armamentarii, 2015, 36(7): 1213-1221. |
[10] | WANG Bing, LI Hong-ru, CHEN Qiang-hua, XU Bao-hua. Rolling Bearing Performance Degradative State Recognition Based on Mathematical Morphological Fractal Dimension andFuzzy Center Means [J]. Acta Armamentarii, 2015, 36(10): 1982-1990. |
[11] | WANG Wei-guo, SUN Lei. Gearbox Vibration Signal Fault Feature Extraction Based on Ensemble Empirical Mode Decomposition andChoi-Williams Distribution [J]. Acta Armamentarii, 2014, 35(8): 1288-1294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||