Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (7): 2426-2441.doi: 10.12382/bgxb.2023.0259
Previous Articles Next Articles
CAI Yao*(), WANG Jianqing, SI Yuhui, WANG Yuzhuo, GUO Wei, WU Zhan
Received:
2023-03-27
Online:
2023-07-18
Contact:
CAI Yao
CLC Number:
CAI Yao, WANG Jianqing, SI Yuhui, WANG Yuzhuo, GUO Wei, WU Zhan. Prediction of Service Life of Gyro Motor Bearing with Small Sample and Unequally Spaced Data[J]. Acta Armamentarii, 2024, 45(7): 2426-2441.
Add to citation manager EndNote|Ris|BibTeX
累积运转 时间/h | 退化特征编号 | |||||
---|---|---|---|---|---|---|
220043 | 220011 | 220003 | ||||
IRMS | Renyi熵 | IRMS | Renyi熵 | IRMS | Renyi熵 | |
0 | 1.000000 | 12.760610 | 1.000000 | 12.154460 | 1.000000 | 12.814080 |
20 | 1.008089 | 12.995436 | 1.009850 | 12.615788 | 1.006422 | 12.772818 |
55 | 1.011968 | 13.121880 | 1.022386 | 13.279650 | 1.014126 | 12.711260 |
64 | 1.011010 | 12.743217 | 1.011759 | 12.638034 | 1.013960 | 12.755355 |
78 | 1.011944 | 12.935760 | 1.017388 | 12.966638 | 1.014049 | 12.732080 |
123 | 1.009818 | 12.543150 | 1.006930 | 12.317130 | 1.013879 | 12.778550 |
144 | 1.008893 | 12.523078 | 1.020371 | 12.452550 | 1.013687 | 12.728857 |
164 | 1.007781 | 12.503110 | 1.020423 | 12.588730 | 1.011535 | 12.676650 |
187 | 1.007952 | 12.988720 | 1.026127 | 12.839160 | 1.001110 | 12.783950 |
205 | 1.007246 | 12.886852 | 1.028555 | 13.131620 | 1.009151 | 12.791182 |
226 | 1.008892 | 12.832840 | 1.018645 | 13.257020 | 1.011227 | 12.794500 |
243 | 1.008743 | 12.984810 | 1.017111 | 12.748890 | 1.015668 | 13.270220 |
267 | 1.008647 | 13.022864 | 1.025812 | 12.938729 | 1.017248 | 13.285421 |
280 | 1.014697 | 13.086070 | 1.021895 | 13.311210 | 1.017211 | 13.316950 |
309 | 1.010683 | 12.652590 | 1.019687 | 12.844010 | 1.011412 | 12.657030 |
333 | 1.012474 | 12.868410 | 1.019994 | 12.949610 | 1.019678 | 12.477780 |
358 | 1.012305 | 12.870947 | 1.026154 | 12.968855 | 1.018409 | 12.734486 |
374 | 1.012103 | 12.873710 | 1.018154 | 12.990050 | 1.014866 | 13.053870 |
396 | 1.008989 | 13.402536 | 1.022165 | 13.114836 | 1.035628 | 13.588148 |
419 | 1.010530 | 13.151701 | 1.023789 | 13.055913 | 1.027330 | 13.330807 |
442 | 1.007410 | 13.649570 | 1.013922 | 13.180680 | 1.046018 | 13.913390 |
451 | 1.101613 | 14.792932 | 1.105410 | 13.773929 | 1.085554 | 14.365252 |
467 | 1.063090 | 13.910431 | 1.155980 | 13.599005 | 1.197124 | 14.607567 |
479 | 1.086249 | 14.063920 | 1.196534 | 16.275224 | 1.129003 | 14.951632 |
492 | 1.099945 | 14.180621 | 1.213297 | 17.048331 | 1.170872 | 15.468065 |
510 | 1.171855 | 15.227048 | 1.259082 | 17.635756 | 1.212425 | 15.998750 |
521 | 1.123821 | 14.871357 | 1.298111 | 18.252993 | 1.199307 | 16.130718 |
536 | 1.177895 | 15.920309 | 1.356910 | 18.876250 | 1.222185 | 16.437612 |
556 | 1.207621 | 15.569185 | 1.247730 | 16.821767 | ||
580 | 1.212569 | 15.908466 | 1.290866 | 17.289143 | ||
603 | 1.275265 | 16.501803 | 1.346950 | 18.039797 | ||
621 | 1.278898 | 16.834760 | 1.338238 | 17.917427 | ||
641 | 1.273854 | 17.033510 | 1.375423 | 18.512040 | ||
661 | 1.331158 | 17.865882 | ||||
681 | 1.366120 | 18.297010 |
Table 1 Summary of motor bearing degradation characteristics
累积运转 时间/h | 退化特征编号 | |||||
---|---|---|---|---|---|---|
220043 | 220011 | 220003 | ||||
IRMS | Renyi熵 | IRMS | Renyi熵 | IRMS | Renyi熵 | |
0 | 1.000000 | 12.760610 | 1.000000 | 12.154460 | 1.000000 | 12.814080 |
20 | 1.008089 | 12.995436 | 1.009850 | 12.615788 | 1.006422 | 12.772818 |
55 | 1.011968 | 13.121880 | 1.022386 | 13.279650 | 1.014126 | 12.711260 |
64 | 1.011010 | 12.743217 | 1.011759 | 12.638034 | 1.013960 | 12.755355 |
78 | 1.011944 | 12.935760 | 1.017388 | 12.966638 | 1.014049 | 12.732080 |
123 | 1.009818 | 12.543150 | 1.006930 | 12.317130 | 1.013879 | 12.778550 |
144 | 1.008893 | 12.523078 | 1.020371 | 12.452550 | 1.013687 | 12.728857 |
164 | 1.007781 | 12.503110 | 1.020423 | 12.588730 | 1.011535 | 12.676650 |
187 | 1.007952 | 12.988720 | 1.026127 | 12.839160 | 1.001110 | 12.783950 |
205 | 1.007246 | 12.886852 | 1.028555 | 13.131620 | 1.009151 | 12.791182 |
226 | 1.008892 | 12.832840 | 1.018645 | 13.257020 | 1.011227 | 12.794500 |
243 | 1.008743 | 12.984810 | 1.017111 | 12.748890 | 1.015668 | 13.270220 |
267 | 1.008647 | 13.022864 | 1.025812 | 12.938729 | 1.017248 | 13.285421 |
280 | 1.014697 | 13.086070 | 1.021895 | 13.311210 | 1.017211 | 13.316950 |
309 | 1.010683 | 12.652590 | 1.019687 | 12.844010 | 1.011412 | 12.657030 |
333 | 1.012474 | 12.868410 | 1.019994 | 12.949610 | 1.019678 | 12.477780 |
358 | 1.012305 | 12.870947 | 1.026154 | 12.968855 | 1.018409 | 12.734486 |
374 | 1.012103 | 12.873710 | 1.018154 | 12.990050 | 1.014866 | 13.053870 |
396 | 1.008989 | 13.402536 | 1.022165 | 13.114836 | 1.035628 | 13.588148 |
419 | 1.010530 | 13.151701 | 1.023789 | 13.055913 | 1.027330 | 13.330807 |
442 | 1.007410 | 13.649570 | 1.013922 | 13.180680 | 1.046018 | 13.913390 |
451 | 1.101613 | 14.792932 | 1.105410 | 13.773929 | 1.085554 | 14.365252 |
467 | 1.063090 | 13.910431 | 1.155980 | 13.599005 | 1.197124 | 14.607567 |
479 | 1.086249 | 14.063920 | 1.196534 | 16.275224 | 1.129003 | 14.951632 |
492 | 1.099945 | 14.180621 | 1.213297 | 17.048331 | 1.170872 | 15.468065 |
510 | 1.171855 | 15.227048 | 1.259082 | 17.635756 | 1.212425 | 15.998750 |
521 | 1.123821 | 14.871357 | 1.298111 | 18.252993 | 1.199307 | 16.130718 |
536 | 1.177895 | 15.920309 | 1.356910 | 18.876250 | 1.222185 | 16.437612 |
556 | 1.207621 | 15.569185 | 1.247730 | 16.821767 | ||
580 | 1.212569 | 15.908466 | 1.290866 | 17.289143 | ||
603 | 1.275265 | 16.501803 | 1.346950 | 18.039797 | ||
621 | 1.278898 | 16.834760 | 1.338238 | 17.917427 | ||
641 | 1.273854 | 17.033510 | 1.375423 | 18.512040 | ||
661 | 1.331158 | 17.865882 | ||||
681 | 1.366120 | 18.297010 |
模型参数 | 设定值 |
---|---|
新陈代谢子列维度Q | 10 |
BBO算法迭代次数In | 400 |
栖息地数量L | 200 |
最大迁入率、迁出率Pλ,μ | 1 |
AS迁移算子概率PAS | 0.4 |
最大突变率Pmm | 0.05 |
Table 2 Model parameter information
模型参数 | 设定值 |
---|---|
新陈代谢子列维度Q | 10 |
BBO算法迭代次数In | 400 |
栖息地数量L | 200 |
最大迁入率、迁出率Pλ,μ | 1 |
AS迁移算子概率PAS | 0.4 |
最大突变率Pmm | 0.05 |
间隔变化 后累积工 作时间/h 及平均值 | 实测值间 隔变换后 的IRMS | 滚动建 模次数 q | 拟合 精度/ % | IRMS 预测值 | 预测精 度/% |
---|---|---|---|---|---|
227.8 | 1.018482 | 1 | 98.38 | 0.927759 | 91.09 |
248.9 | 1.019250 | 2 | 96.50 | 1.001069 | 98.22 |
263.9 | 1.024688 | 3 | 99.24 | 1.004260 | 98.01 |
289.6 | 1.021164 | 4 | 99.20 | 0.948433 | 92.88 |
302.5 | 1.020182 | 5 | 99.02 | 1.022177 | 99.80 |
329.7 | 1.019952 | 6 | 99.64 | 1.012181 | 99.24 |
354.0 | 1.025169 | 7 | 99.60 | 1.017137 | 99.22 |
379.6 | 1.019175 | 8 | 99.62 | 1.023771 | 99.55 |
394.8 | 1.021946 | 9 | 99.77 | 1.013074 | 99.13 |
417.2 | 1.023662 | 10 | 99.03 | 1.013478 | 99.01 |
440.5 | 1.014566 | 11 | 99.76 | 1.027540 | 98.72 |
464.1 | 1.146814 | 12 | 91.91 | 1.093822 | 95.38 |
471.5 | 1.171187 | 13 | 98.34 | 1.157042 | 98.79 |
487.8 | 1.207881 | 14 | 98.17 | 1.226958 | 98.42 |
497.9 | 1.228304 | 15 | 96.23 | 1.257111 | 97.65 |
509.7 | 1.258319 | 16 | 97.21 | 1.243437 | 98.82 |
526.9 | 1.321238 | 17 | 98.44 | 1.290234 | 97.65 |
536.0 | 1.356910 | 18 | 97.36 | 1.322070 | 97.43 |
平均值 | 98.190 | 97.723 |
Table 3 220011 Gyro IRMSprediction results
间隔变化 后累积工 作时间/h 及平均值 | 实测值间 隔变换后 的IRMS | 滚动建 模次数 q | 拟合 精度/ % | IRMS 预测值 | 预测精 度/% |
---|---|---|---|---|---|
227.8 | 1.018482 | 1 | 98.38 | 0.927759 | 91.09 |
248.9 | 1.019250 | 2 | 96.50 | 1.001069 | 98.22 |
263.9 | 1.024688 | 3 | 99.24 | 1.004260 | 98.01 |
289.6 | 1.021164 | 4 | 99.20 | 0.948433 | 92.88 |
302.5 | 1.020182 | 5 | 99.02 | 1.022177 | 99.80 |
329.7 | 1.019952 | 6 | 99.64 | 1.012181 | 99.24 |
354.0 | 1.025169 | 7 | 99.60 | 1.017137 | 99.22 |
379.6 | 1.019175 | 8 | 99.62 | 1.023771 | 99.55 |
394.8 | 1.021946 | 9 | 99.77 | 1.013074 | 99.13 |
417.2 | 1.023662 | 10 | 99.03 | 1.013478 | 99.01 |
440.5 | 1.014566 | 11 | 99.76 | 1.027540 | 98.72 |
464.1 | 1.146814 | 12 | 91.91 | 1.093822 | 95.38 |
471.5 | 1.171187 | 13 | 98.34 | 1.157042 | 98.79 |
487.8 | 1.207881 | 14 | 98.17 | 1.226958 | 98.42 |
497.9 | 1.228304 | 15 | 96.23 | 1.257111 | 97.65 |
509.7 | 1.258319 | 16 | 97.21 | 1.243437 | 98.82 |
526.9 | 1.321238 | 17 | 98.44 | 1.290234 | 97.65 |
536.0 | 1.356910 | 18 | 97.36 | 1.322070 | 97.43 |
平均值 | 98.190 | 97.723 |
间隔变化 后累积工 作时间/h 及平均值 | 实测值间 隔变换后 Renyi熵 | 滚动 建模 次数q | 拟合 精度/ % | Renyi熵 预测值 | 预测 精度/ % |
---|---|---|---|---|---|
227.8 | 13.203218 | 1 | 96.82 | 12.566447 | 95.18 |
248.9 | 12.795559 | 2 | 96.13 | 12.204648 | 95.38 |
263.9 | 12.914208 | 3 | 97.87 | 11.773341 | 91.17 |
289.6 | 13.156551 | 4 | 98.36 | 12.521366 | 95.17 |
302.5 | 12.948727 | 5 | 98.84 | 13.227994 | 97.84 |
329.7 | 12.935090 | 6 | 98.85 | 13.303450 | 97.15 |
354.0 | 12.965776 | 7 | 99.09 | 12.882210 | 99.36 |
379.6 | 13.021814 | 8 | 99.12 | 12.970794 | 99.61 |
394.8 | 13.108030 | 9 | 98.24 | 13.008015 | 99.24 |
417.2 | 13.060524 | 10 | 99.48 | 12.798532 | 97.99 |
440.5 | 13.172543 | 11 | 99.37 | 12.996760 | 98.67 |
464.1 | 13.630710 | 12 | 99.12 | 13.177669 | 96.68 |
471.5 | 14.602587 | 13 | 98.89 | 13.335283 | 91.32 |
487.8 | 16.798558 | 14 | 99.02 | 14.328817 | 85.30 |
497.9 | 17.240876 | 15 | 96.14 | 15.849059 | 91.93 |
509.7 | 17.625966 | 16 | 98.04 | 16.945806 | 96.14 |
526.9 | 18.498141 | 17 | 95.37 | 18.963902 | 97.48 |
536.0 | 18.876250 | 18 | 97.78 | 18.813507 | 99.67 |
平均值 | 98.141 | 95.848 |
Table 4 220011 gyro Renyi entropy prediction results
间隔变化 后累积工 作时间/h 及平均值 | 实测值间 隔变换后 Renyi熵 | 滚动 建模 次数q | 拟合 精度/ % | Renyi熵 预测值 | 预测 精度/ % |
---|---|---|---|---|---|
227.8 | 13.203218 | 1 | 96.82 | 12.566447 | 95.18 |
248.9 | 12.795559 | 2 | 96.13 | 12.204648 | 95.38 |
263.9 | 12.914208 | 3 | 97.87 | 11.773341 | 91.17 |
289.6 | 13.156551 | 4 | 98.36 | 12.521366 | 95.17 |
302.5 | 12.948727 | 5 | 98.84 | 13.227994 | 97.84 |
329.7 | 12.935090 | 6 | 98.85 | 13.303450 | 97.15 |
354.0 | 12.965776 | 7 | 99.09 | 12.882210 | 99.36 |
379.6 | 13.021814 | 8 | 99.12 | 12.970794 | 99.61 |
394.8 | 13.108030 | 9 | 98.24 | 13.008015 | 99.24 |
417.2 | 13.060524 | 10 | 99.48 | 12.798532 | 97.99 |
440.5 | 13.172543 | 11 | 99.37 | 12.996760 | 98.67 |
464.1 | 13.630710 | 12 | 99.12 | 13.177669 | 96.68 |
471.5 | 14.602587 | 13 | 98.89 | 13.335283 | 91.32 |
487.8 | 16.798558 | 14 | 99.02 | 14.328817 | 85.30 |
497.9 | 17.240876 | 15 | 96.14 | 15.849059 | 91.93 |
509.7 | 17.625966 | 16 | 98.04 | 16.945806 | 96.14 |
526.9 | 18.498141 | 17 | 95.37 | 18.963902 | 97.48 |
536.0 | 18.876250 | 18 | 97.78 | 18.813507 | 99.67 |
平均值 | 98.141 | 95.848 |
Q值 | 平均时间 跨度/h | 所需滚动 建模次数 | 残差建模 补偿次数 | EMD分解 平均阶数 | 预测精度 平均值/% |
---|---|---|---|---|---|
8 | 187.4 | 20 | 0 | 2.65 | 95.905 |
9 | 210.4 | 19 | 0 | 2.74 | 95.829 |
10 | 227.8 | 18 | 32 | 3.06 | 95.848 |
11 | 248.6 | 17 | 48 | 3.24 | 95.913 |
12 | 265.1 | 16 | 52 | 3.38 | 94.423 |
13 | 289.3 | 15 | 49 | 3.27 | 95.080 |
14 | 301.5 | 14 | 47 | 3.36 | 92.395 |
Table 5 Information corresponding to each Q value
Q值 | 平均时间 跨度/h | 所需滚动 建模次数 | 残差建模 补偿次数 | EMD分解 平均阶数 | 预测精度 平均值/% |
---|---|---|---|---|---|
8 | 187.4 | 20 | 0 | 2.65 | 95.905 |
9 | 210.4 | 19 | 0 | 2.74 | 95.829 |
10 | 227.8 | 18 | 32 | 3.06 | 95.848 |
11 | 248.6 | 17 | 48 | 3.24 | 95.913 |
12 | 265.1 | 16 | 52 | 3.38 | 94.423 |
13 | 289.3 | 15 | 49 | 3.27 | 95.080 |
14 | 301.5 | 14 | 47 | 3.36 | 92.395 |
模型 | 模块 |
---|---|
非等间隔 EMD-BBO-GM(1,1) | 1)间隔变换模块 2)数据分解模块 3)模型构建模块 4)参数优化模块 |
模型1 | 1)间隔变换模块 2)数据分解模块 3)模型构建模块 |
模型2 | 1)间隔变换模块 2)模型构建模块 |
模型3 | 仅含模型构建模块 |
Table 6 Modules in the model
模型 | 模块 |
---|---|
非等间隔 EMD-BBO-GM(1,1) | 1)间隔变换模块 2)数据分解模块 3)模型构建模块 4)参数优化模块 |
模型1 | 1)间隔变换模块 2)数据分解模块 3)模型构建模块 |
模型2 | 1)间隔变换模块 2)模型构建模块 |
模型3 | 仅含模型构建模块 |
模型 | 计算耗时/s |
---|---|
非等间隔EMD-BBO-GM(1,1) | 3041.778 |
模型1 | 2.367 |
模型2 | 2.129 |
模型3 | 1.827 |
Table 7 List of calculation time of each model
模型 | 计算耗时/s |
---|---|
非等间隔EMD-BBO-GM(1,1) | 3041.778 |
模型1 | 2.367 |
模型2 | 2.129 |
模型3 | 1.827 |
滚动建模 次数q | 非等间隔 EMD-BBO-GM(1,1)模型 | 模型1 | 模型2 | 模型3 |
---|---|---|---|---|
1 | 95.18 | 90.60 | 89.45 | 89.03 |
2 | 95.38 | 98.22 | 96.59 | 57.88 |
3 | 91.17 | 92.86 | 98.94 | 72.59 |
4 | 95.17 | 97.87 | 98.59 | 71.68 |
5 | 97.84 | 98.71 | 86.05 | 5.11 |
6 | 97.15 | 96.90 | 99.89 | 71.28 |
7 | 99.36 | 93.10 | 98.80 | 80.61 |
8 | 99.61 | 98.14 | 98.18 | 64.68 |
9 | 99.24 | 99.36 | 97.12 | 94.03 |
10 | 97.99 | 99.02 | 99.52 | 95.76 |
11 | 98.67 | 99.70 | 98.04 | 98.10 |
12 | 96.68 | 97.33 | 95.72 | 34.67 |
13 | 91.32 | 87.00 | 92.19 | 66.39 |
14 | 85.30 | 78.97 | 56.87 | 81.17 |
15 | 91.93 | 86.35 | 87.15 | 95.80 |
16 | 96.14 | 96.78 | 95.12 | 44.49 |
17 | 97.48 | 90.81 | 97.97 | 85.60 |
18 | 99.67 | 99.18 | 98.35 | 66.83 |
平均值 | 95.848 | 94.495 | 93.586 | 70.873 |
Table 8 List of prediction accuracy of each model
滚动建模 次数q | 非等间隔 EMD-BBO-GM(1,1)模型 | 模型1 | 模型2 | 模型3 |
---|---|---|---|---|
1 | 95.18 | 90.60 | 89.45 | 89.03 |
2 | 95.38 | 98.22 | 96.59 | 57.88 |
3 | 91.17 | 92.86 | 98.94 | 72.59 |
4 | 95.17 | 97.87 | 98.59 | 71.68 |
5 | 97.84 | 98.71 | 86.05 | 5.11 |
6 | 97.15 | 96.90 | 99.89 | 71.28 |
7 | 99.36 | 93.10 | 98.80 | 80.61 |
8 | 99.61 | 98.14 | 98.18 | 64.68 |
9 | 99.24 | 99.36 | 97.12 | 94.03 |
10 | 97.99 | 99.02 | 99.52 | 95.76 |
11 | 98.67 | 99.70 | 98.04 | 98.10 |
12 | 96.68 | 97.33 | 95.72 | 34.67 |
13 | 91.32 | 87.00 | 92.19 | 66.39 |
14 | 85.30 | 78.97 | 56.87 | 81.17 |
15 | 91.93 | 86.35 | 87.15 | 95.80 |
16 | 96.14 | 96.78 | 95.12 | 44.49 |
17 | 97.48 | 90.81 | 97.97 | 85.60 |
18 | 99.67 | 99.18 | 98.35 | 66.83 |
平均值 | 95.848 | 94.495 | 93.586 | 70.873 |
间隔变化 后累积工 作时间/h 及平均值 | 实测值间 隔变换后 的Renyi熵 | 滚动建模 次数q | 预测值 | 预测 精度/% |
---|---|---|---|---|
248.9 | 12.795559 | 1 | 13.292841 | 96.11 |
263.9 | 12.914208 | 2 | 13.574800 | 94.88 |
289.6 | 13.156551 | 3 | 12.112580 | 92.07 |
302.5 | 12.948727 | 4 | 12.206167 | 94.27 |
329.7 | 12.935090 | 5 | 12.975220 | 99.69 |
354.0 | 12.965776 | 6 | 13.126527 | 98.76 |
379.6 | 13.021814 | 7 | 12.137490 | 93.21 |
394.8 | 13.108030 | 8 | 12.136770 | 92.59 |
417.2 | 13.060524 | 9 | 13.118806 | 99.55 |
440.5 | 13.172543 | 10 | 12.991136 | 98.62 |
464.1 | 13.630710 | 11 | 12.039862 | 88.33 |
471.5 | 14.602587 | 12 | 13.374672 | 91.59 |
487.8 | 16.798558 | 13 | 14.977243 | 89.16 |
497.9 | 17.240876 | 14 | 18.666335 | 91.73 |
509.7 | 17.625966 | 15 | 16.701527 | 94.76 |
526.9 | 18.498141 | 16 | 17.511782 | 94.67 |
536.0 | 18.876250 | 17 | 18.593109 | 98.50 |
平均值 | 94.617 |
Table 9 Predicted results of ARIMA model with unequal intervals
间隔变化 后累积工 作时间/h 及平均值 | 实测值间 隔变换后 的Renyi熵 | 滚动建模 次数q | 预测值 | 预测 精度/% |
---|---|---|---|---|
248.9 | 12.795559 | 1 | 13.292841 | 96.11 |
263.9 | 12.914208 | 2 | 13.574800 | 94.88 |
289.6 | 13.156551 | 3 | 12.112580 | 92.07 |
302.5 | 12.948727 | 4 | 12.206167 | 94.27 |
329.7 | 12.935090 | 5 | 12.975220 | 99.69 |
354.0 | 12.965776 | 6 | 13.126527 | 98.76 |
379.6 | 13.021814 | 7 | 12.137490 | 93.21 |
394.8 | 13.108030 | 8 | 12.136770 | 92.59 |
417.2 | 13.060524 | 9 | 13.118806 | 99.55 |
440.5 | 13.172543 | 10 | 12.991136 | 98.62 |
464.1 | 13.630710 | 11 | 12.039862 | 88.33 |
471.5 | 14.602587 | 12 | 13.374672 | 91.59 |
487.8 | 16.798558 | 13 | 14.977243 | 89.16 |
497.9 | 17.240876 | 14 | 18.666335 | 91.73 |
509.7 | 17.625966 | 15 | 16.701527 | 94.76 |
526.9 | 18.498141 | 16 | 17.511782 | 94.67 |
536.0 | 18.876250 | 17 | 18.593109 | 98.50 |
平均值 | 94.617 |
[1] |
于军, 刘可, 郭帅, 等. 基于条件深度循环生成对抗网络和动作探索的行星轮轴承剩余寿命预测[J]. 兵工学报, 2020, 41(11):2170-2178.
|
|
|
[2] |
张亚涛, 邱明, 周大威, 等. 基于双应力加速寿命试验的关节轴承寿命预测与可靠性分析[J]. 润滑与密封, 2020, 45(3):51-56.
doi: 10.3969/j.issn.0254-0150.2020.03.009 |
doi: 10.3969/j.issn.0254-0150.2020.03.009 |
|
[3] |
邱明, 牛凯岑, 李军星, 等. 多重应力下滚动轴承剩余寿命预测[J]. 航空动力学报, 2022, 37(5):980-988.
|
|
|
[4] |
杨创艳, 马军, 王晓东, 等. 特征融合与灰色回归的滚动轴承性能退化评估[J]. 电子学报, 2022, 50(1):106-115.
doi: 10.12263/DZXB.20200826 |
|
|
[5] |
蒋全胜, 许伟洋, 朱俊俊, 等. 基于动态加权卷积长短时记忆网络的滚动轴承剩余寿命预测方法[J]. 振动与冲击, 2022, 41(17):282-291.
|
|
|
[6] |
张昌凡, 高见, 刘建华. 基于灰色模型混合算法的滚动轴承剩余使用寿命预测[J]. 机械设计与研究, 2022, 38(4):103-108.
|
|
|
[7] |
苏琪, 王海波, 施晓辰, 等. 基于灰色预测模型的参数寻优方法及能源预测应用[J]. 南昌大学学报(理科版), 2022, 46(3):371-378.
|
|
|
[8] |
姚德臣, 李博阳, 刘恒畅, 等. 基于注意力GRU算法的滚动轴承剩余寿命预测[J]. 振动与冲击, 2021, 40(17):116-123.
|
|
|
[9] |
孙世岩, 张钢, 梁伟阁, 等. 基于时间序列数据扩增和BLSTM的滚动轴承剩余寿命预测方法[J]. 系统工程与电子技术, 2022, 44(3):1060-1068.
doi: 10.12305/j.issn.1001-506X.2022.03.40 |
doi: 10.12305/j.issn.1001-506X.2022.03.40 |
|
[10] |
吕明珠. 基于改进LSTM的滚动轴承性能退化趋势预测[J]. 轴承, 2022(4):70-76.
|
|
|
[11] |
于震梁, 孙志礼, 曹汝男, 等. 基于支持向量机和卡尔曼滤波的机械零件剩余寿命预测模型研究[J]. 兵工学报, 2018, 39(5):991-997.
doi: 10.3969/j.issn.1000-1093.2018.05.020 |
|
|
[12] |
|
[13] |
|
[14] |
刘小峰, 冯伟, 柏林. 考虑退化轨迹差异性与相似性的轴承RUL预测[J]. 控制与决策, 2021, 36(11):2833-2840.
|
|
|
[15] |
陈仁祥, 吴昊年, 杨黎霞, 等. 多分类器集成加权均衡分布适配的滚动轴承寿命阶段识别[J]. 仪器仪表学报, 2019, 40(10):66-73.
|
|
|
[16] |
陈佳鲜, 毛文涛, 刘京, 等. 基于深度时序特征迁移的轴承剩余寿命预测方法[J]. 控制与决策, 2021, 36(7):1699-1706.
|
|
|
[17] |
申中杰, 陈雪峰, 何正嘉, 等. 基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测[J]. 机械工程学报, 2013, 49(2):183-189.
|
|
|
[18] |
张龙, 宋成洋, 邹友军, 等. 基于Renyi熵和K-medoids聚类的轴承性能退化评估[J]. 振动与冲击, 2020, 39(20):24-31,46.
|
|
|
[19] |
蔡曜, 司玉辉, 王玉琢, 等. 挠性陀螺EMD-ARIMA漂移模型设计与应用[J/OL]. 北京航空航天大学学报:1-13[2023-03-04].DOI:10.13700/j.bh.1001-5965.2022.0871.
|
|
|
[20] |
程立, 马文锁, 夏新涛, 等. 基于改进模糊熵和灰关系的滚动轴承性能退化评估[J]. 机械传动, 2022, 46(1):56-64,86.
doi: 10.16578/j.issn.1004.2539.2022.01.007 |
doi: 10.16578/j.issn.1004.2539.2022.01.007 |
|
[21] |
李文华, 汪立新, 沈强, 等. 基于EMD的MEMS陀螺仪随机漂移分析方法[J]. 北京航空航天大学学报, 2021, 47(9):1927-1932.
|
|
|
[22] |
舒涛, 张一弛, 丁日显. 基于灰色模型与LSTM网络的旋转机械轴承寿命预测[J]. 系统工程与电子技术, 2021, 43(8):2355-2361.
doi: 10.12305/j.issn.1001-506X.2021.08.39 |
doi: 10.12305/j.issn.1001-506X.2021.08.39 |
|
[23] |
蔡安江, 蔡曜, 郭师虹, 等. 两端式同轨双车运行模式的货位分配策略[J]. 计算机集成制造系统, 2018, 24(12):3165-3177.
|
|
[1] | WANG Yong, WANG Xibin, WANG Zhibin, LIU Zhibing, LIU Shuyao, CHEN Hongtao, WANG Pai. Fatigue Life Prediction Model with Back Stress Energy Method Based on the Machined Surface Layer of High Strength Steel [J]. Acta Armamentarii, 2023, 44(3): 806-815. |
[2] | YI Huai-jun, LIU Ning, ZHANG Xiang-yan, DING Chuan-jun. Prediction of Gun Barrel Wear Based on Improved Non-equal Interval Grey Model and BP Neural Network [J]. Acta Armamentarii, 2016, 37(12): 2220-2225. |
[3] | LU Yan-li, MU Jing-yang. Evaluation Model of Aging Properties of Stealth Coatings Based on Genetic BP Neural Network [J]. Acta Armamentarii, 2015, 36(8): 1580-1586. |
[4] | ZHAO Jian-zhong, YE Wen, ZHANG Lei. Failure Prediction of Missile Equipment Based on Data Fusion and AMUGM(11) Model [J]. Acta Armamentarii, 2014, 35(10): 1689-1695. |
[5] | TANG Guo-jin, SHEN Zhi-bin, TIAN Si-peng, YANG Dong. Probabilistic Storage Life Prediction of Solid Rocket Motor Grain [J]. Acta Armamentarii, 2012, 33(3): 301-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||