Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (7): 2128-2143.doi: 10.12382/bgxb.2023.0526
Previous Articles Next Articles
YANG Huanyu, WANG Jun*(), WU Xiang, BO Yuming, MA Lifeng, LU Jinlei
Received:
2023-05-27
Online:
2023-08-15
Contact:
WANG Jun
CLC Number:
YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network[J]. Acta Armamentarii, 2024, 45(7): 2128-2143.
Add to citation manager EndNote|Ris|BibTeX
算法模型 | 预测准确度/% | epoch |
---|---|---|
HOG+SVM | 68.6 | 1 |
ResNet50 | 90.4 | 20 |
ResNet50-CBAM | 89.8 | 20 |
ResNet50-CA | 91.5 | 20 |
Swin-T | 92.0 | 20 |
VAN-B2 | 94.3 | 20 |
ConvNeXt | 93.5 | 20 |
ConvNeXt-CBAM | 94.7 | 20 |
ConvNeXt-CA-a | 94.8 | 20 |
ConvNeXt-CA | 96.0 | 20 |
Table 1 Best accuracies of different models
算法模型 | 预测准确度/% | epoch |
---|---|---|
HOG+SVM | 68.6 | 1 |
ResNet50 | 90.4 | 20 |
ResNet50-CBAM | 89.8 | 20 |
ResNet50-CA | 91.5 | 20 |
Swin-T | 92.0 | 20 |
VAN-B2 | 94.3 | 20 |
ConvNeXt | 93.5 | 20 |
ConvNeXt-CBAM | 94.7 | 20 |
ConvNeXt-CA-a | 94.8 | 20 |
ConvNeXt-CA | 96.0 | 20 |
混淆矩阵 | 真实值 | ||
---|---|---|---|
正样本 | 负样本 | ||
预测值 | 正样本 | TP | FP |
负样本 | FN | TN |
Table 2 Confusion matrix underlying index relation
混淆矩阵 | 真实值 | ||
---|---|---|---|
正样本 | 负样本 | ||
预测值 | 正样本 | TP | FP |
负样本 | FN | TN |
算法模型 | 精确率/% | 召回率/% | 特异度/% |
---|---|---|---|
ResNet50 | 91.04 | 90.13 | 99.70 |
ResNet50-CBAM | 90.97 | 89.19 | 99.69 |
ResNet50-CA | 91.87 | 91.01 | 99.73 |
Swin-T | 92.76 | 91.31 | 99.76 |
ConvNeXt | 93.71 | 92.75 | 99.80 |
ConvNeXt-CBAM | 95.73 | 93.86 | 99.83 |
ConvNeXt-CA-a | 95.15 | 94.34 | 99.84 |
ConvNeXt-CA | 96.12 | 95.33 | 99.88 |
Table 3 The evaluation index values of different models
算法模型 | 精确率/% | 召回率/% | 特异度/% |
---|---|---|---|
ResNet50 | 91.04 | 90.13 | 99.70 |
ResNet50-CBAM | 90.97 | 89.19 | 99.69 |
ResNet50-CA | 91.87 | 91.01 | 99.73 |
Swin-T | 92.76 | 91.31 | 99.76 |
ConvNeXt | 93.71 | 92.75 | 99.80 |
ConvNeXt-CBAM | 95.73 | 93.86 | 99.83 |
ConvNeXt-CA-a | 95.15 | 94.34 | 99.84 |
ConvNeXt-CA | 96.12 | 95.33 | 99.88 |
算法模型 | 准确度/% | 运行时间/s |
---|---|---|
ConvNeXt | 93.5 | 4.60 |
ConvNeXt+CA | 96 | 4.62 |
Table 4 Recognition accuraciesandrun times of different methods
算法模型 | 准确度/% | 运行时间/s |
---|---|---|
ConvNeXt | 93.5 | 4.60 |
ConvNeXt+CA | 96 | 4.62 |
算法模型 | 训练准确度/% | epoch |
---|---|---|
ResNet50+迁移学习 | 86.1 | 20 |
ResNet50随机初始化 | 70.4 | 20 |
ConvNeXt+迁移学习 | 94.4 | 20 |
ConvNeXt随机初始化 | 83.1 | 20 |
Table 5 The accuracies of different methods
算法模型 | 训练准确度/% | epoch |
---|---|---|
ResNet50+迁移学习 | 86.1 | 20 |
ResNet50随机初始化 | 70.4 | 20 |
ConvNeXt+迁移学习 | 94.4 | 20 |
ConvNeXt随机初始化 | 83.1 | 20 |
算法模型 | 迁移学习 | CA | Epoch | 预测准确度/% |
---|---|---|---|---|
20 | 82.6 | |||
ConvNeXt | P | 20 | 93.5 | |
P | 20 | 84.2 | ||
P | P | 20 | 96.0 |
Table 6 Effects of different improved methods on military aircraft image recognition results
算法模型 | 迁移学习 | CA | Epoch | 预测准确度/% |
---|---|---|---|---|
20 | 82.6 | |||
ConvNeXt | P | 20 | 93.5 | |
P | 20 | 84.2 | ||
P | P | 20 | 96.0 |
[1] |
张永梅, 赖裕平, 马健喆, 等. 基于视频的装甲车和飞机检测跟踪及轨迹预测算法[J]. 兵工学报, 2021, 42(3):545-554.
doi: 10.3969/j.issn.1000-1093.2021.03.010 |
doi: 10.3969/j.issn.1000-1093.2021.03.010 |
|
[2] |
|
[3] |
王铁虎, 焦爱泉, 冯连仲, 等. 精确打击作战与装甲装备未来发展[J]. 兵工学报, 2010, 31(增刊2):61-67.
|
|
|
[4] |
李明悦, 何乐生, 雷晨, 等. 基于注意力特征融合的SqueezeNet细粒度图像分类模型[J]. 云南大学学报(自然科学版), 2021, 43(5):868-876.
|
|
|
[5] |
龙怡灿, 雷蓉, 董杨, 等. 基于YOLOv5算法的飞机类型光学遥感识别[J]. 地球信息科学学报, 2022, 24(3):572-582.
doi: 10.12082/dqxxkx.2022.210369 |
|
|
[6] |
王娜, 胡超芳. 基于客观聚类的手写数字识别方法[J]. 复杂系统与复杂性科学, 2019, 16(2):77-84,94.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
张宪法, 郝矿荣, 陈磊. 免疫多域特征融合的多核学习SVM运动想象脑电信号分类[J]. 自动化学报, 2020, 46(11):2417-2426.
|
|
|
[11] |
|
[12] |
|
[13] |
李泽东, 李志农, 陶俊勇, 等. 基于特征融合的注意力增强卷积神经网络的航空发动机滚动轴承故障诊断方法[J]. 兵工学报, 2022, 43(12):3228-3239.
|
|
|
[14] |
张良安, 陈洋, 谢胜龙, 等. 基于机器视觉与深度学习的飞机防护栅裂纹检测系统[J]. 兵工学报, 2023, 44(2):507-516.
doi: 10.12382/bgxb.2021.0674 |
doi: 10.12382/bgxb.2021.0674 |
|
[15] |
刘秋, 孙晋伟, 张华, 等. 基于卷积神经网络的路面识别及半主动悬架控制[J]. 兵工学报, 2020, 41(8):1483-1493.
doi: 10.3969/j.issn.1000-1093.2020.08.002 |
doi: 10.3969/j.issn.1000-1093.2020.08.002 |
|
[16] |
兰天, 李博, 杨敬宝. 基于小样本多背景下的飞机图像识别研究[J]. 电脑编程技巧与维护, 2020(4):142-144.
|
|
|
[17] |
张文达, 许悦雷, 倪嘉成, 等. 基于多尺度分块卷积神经网络的图像目标识别算法[J]. 计算机应用, 2016, 36(4):1033-1038.
doi: 10.11772/j.issn.1001-9081.2016.04.1033 |
doi: 10.11772/j.issn.1001-9081.2016.04.1033 |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[1] | Zhou Hao, Bao Xiaopeng, Zhang Honggang. Improved Design of Phase Modulation Compensation and Analysis of Disturbance Suppression for UAV Active disturbance rejection control [J]. Acta Armamentarii, 0, (): 0-0. |
[2] | LIU Siyu, ZHANG Deyu, MING Zhiyuan, LIU Mengzhen, LIU Ziyu, CHEN Qiming, ZHANG Jian, WU Jinglong, YAN Tianyi. Remote Brain-Controlled Unmanned Aerial System Based on Brain-Machine Interface and Human-Machine Closed Loop [J]. Acta Armamentarii, 0, (): 0-0. |
[3] | LI Zenglin, LI Bo, BAI Shuangxia, MENG Bobo. UAV Autonomous Air Combat Decision-making Based on AM-SAC [J]. Acta Armamentarii, 2023, 44(9): 2849-2858. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||