Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (10): 3744-3753.doi: 10.12382/bgxb.2023.0756
Previous Articles Next Articles
ZHOU Honggen1, REN Xiaodie1, SUN Li1,2,*(), LI Guochao1, WEN Sizhao3, PENG Zhan1, LIU Yinfei1
Received:
2023-08-15
Online:
2023-12-04
Contact:
SUN Li
CLC Number:
ZHOU Honggen, REN Xiaodie, SUN Li, LI Guochao, WEN Sizhao, PENG Zhan, LIU Yinfei. Study of JUST Slewing Bearing Failure Test Data[J]. Acta Armamentarii, 2024, 45(10): 3744-3753.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
外径/mm | 135 | 总高度/mm | 22 |
内径/mm | 65 | 内外圈高度/mm | 20 |
外孔距/mm | 120 | 孔数 | 8 |
内孔距/mm | 80 | 丝孔/mm | M8 |
齿宽/mm | 20 | 齿顶圆直径/mm | 144 |
模数 | 2 | 重量/kg | 1.5 |
齿数 | 70 | 滚子个数 | 52 |
Table 1 Specific parameters of 111.10.100 single-row crossed cylindrical roller slewing rings
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
外径/mm | 135 | 总高度/mm | 22 |
内径/mm | 65 | 内外圈高度/mm | 20 |
外孔距/mm | 120 | 孔数 | 8 |
内孔距/mm | 80 | 丝孔/mm | M8 |
齿宽/mm | 20 | 齿顶圆直径/mm | 144 |
模数 | 2 | 重量/kg | 1.5 |
齿数 | 70 | 滚子个数 | 52 |
工况编号 | 输出转速/(r·min-1) | 倾覆力/N |
---|---|---|
1 | 2 | 0 |
2 | 2 | 30 |
3 | 2 | 60 |
4 | 6 | 0 |
5 | 6 | 30 |
6 | 6 | 60 |
7 | 12 | 0 |
8 | 12 | 30 |
9 | 12 | 60 |
Table 2 Fault test and design condition of slewing bearing
工况编号 | 输出转速/(r·min-1) | 倾覆力/N |
---|---|---|
1 | 2 | 0 |
2 | 2 | 30 |
3 | 2 | 60 |
4 | 6 | 0 |
5 | 6 | 30 |
6 | 6 | 60 |
7 | 12 | 0 |
8 | 12 | 30 |
9 | 12 | 60 |
传感器类型 | 传感器型号 | 性能参数 |
---|---|---|
单向传感器 | 8702B100 | x轴灵敏度:49.57mV/g、 49.38mV/g、48.93mV/g; 测量范围:±100g 温度范围:-54~100℃ |
三向传感器 | 8763B100BB | x轴灵敏度:51.40mV/g; y轴灵敏度:50.13mV/g; z轴灵敏度:51.01mV/g; 测量范围:±100g; 温度范围:-54~100℃ |
声发射传感器 | 8152C0050511 | 灵敏度:57dB; 频率范围:50~400kHz; 温度范围:-55~165℃ |
声发射安装磁座 | 8443B | 电压:24V |
Table 3 Sensor performance indexes
传感器类型 | 传感器型号 | 性能参数 |
---|---|---|
单向传感器 | 8702B100 | x轴灵敏度:49.57mV/g、 49.38mV/g、48.93mV/g; 测量范围:±100g 温度范围:-54~100℃ |
三向传感器 | 8763B100BB | x轴灵敏度:51.40mV/g; y轴灵敏度:50.13mV/g; z轴灵敏度:51.01mV/g; 测量范围:±100g; 温度范围:-54~100℃ |
声发射传感器 | 8152C0050511 | 灵敏度:57dB; 频率范围:50~400kHz; 温度范围:-55~165℃ |
声发射安装磁座 | 8443B | 电压:24V |
工况编号 | 回转支承状态 | 采样次数 | 总采样数 |
---|---|---|---|
N | |||
1 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
2 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
3 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
4 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
5 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
6 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
7 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
8 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
9 | B1 | 5 | 20 |
I | |||
O |
Table 4 List of data set of slewing bearing fault test
工况编号 | 回转支承状态 | 采样次数 | 总采样数 |
---|---|---|---|
N | |||
1 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
2 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
3 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
4 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
5 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
6 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
7 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
8 | B1 | 5 | 20 |
I | |||
O | |||
N | |||
9 | B1 | 5 | 20 |
I | |||
O |
[1] |
张占立, 周鹏举, 李文博, 等. YRT转台轴承摩擦力矩特性研究[J]. 兵工学报, 2019, 40(7): 1495-1502.
doi: 10.3969/j.issn.1000-1093.2019.07.020 |
|
|
[2] |
陈渐伟, 于传强, 刘志浩, 等. 多轴特种车辆的数据建模方法及横向动力学应用[J]. 兵工学报, 2023, 44(1): 165-175.
doi: 10.12382/bgxb.2022.0811 |
|
|
[3] |
韩清凯, 云向河, 李宁, 等. 大型滚动轴承故障诊断及寿命评估技术进展[J]. 轴承, 2021(9): 1-13.
|
|
|
[4] |
陆超, 陈捷, 洪荣晶. 采用概率主成分分析的回转支承寿命状态识别[J]. 西安交通大学学报, 2015, 49(10): 90-96.
|
|
|
[5] |
封杨, 黄筱调, 洪荣晶, 等. 基于圆域分析的大型回转支承初期故障诊断[J]. 振动与冲击, 2017, 36(9): 108-115.
|
|
|
[6] |
曾耀传, 林云树, 吴晓梅. 基于EEMD与GWO-MCKD的门座起重机回转支承故障诊断[J]. 机床与液压, 2022, 50(7): 170-175.
doi: 10.3969/j.issn.1001-3881.2022.07.031 |
|
|
[7] |
郑强, 林云树, 吴晓梅, 等. 基于VMD与自适应MOMEDA的回转支承故障诊断[J]. 组合机床与自动化加工技术, 2022(5): 79-82.
doi: 10.13462/j.cnki.mmtamt.2022.05.019 |
|
|
[8] |
李云飞, 苏文胜. 基于时序灰度图和分组ResNet的回转支承故障诊断[J]. 机床与液压, 2022, 50(12): 187-191.
doi: 10.3969/j.issn.1001-3881.2022.12.034 |
|
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
邱明, 周大威, 周占生. 基于加速寿命试验的自润滑关节轴承可靠性分析[J]. 兵工学报, 2018, 39(7): 1429-1435.
doi: 10.3969/j.issn.1000-1093.2018.07.022 |
|
|
[17] |
刘惠, 刘振宇, 郏维强, 等. 深度学习在装备剩余使用寿命预测技术中的研究现状与挑战[J]. 计算机集成制造系统, 2021, 27(1): 34-52.
|
|
|
[18] |
|
[19] |
雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104.
doi: 10.3901/JME.2018.05.094 |
|
|
[20] |
杨丽, 高勇. 回转支承的开发和应用[J]. 科技风, 2017(6): 183.
|
|
|
[21] |
胡剑, 赵鹏飞, 李刚炎, 等. 基于ANSYS Workbench的某型车载雷达回转支承接触疲劳寿命研究[J]. 机械传动, 2020, 44(7): 107-112.
doi: 10.16578/j.issn.1004.2539.2020.07.018 |
|
|
[22] |
徐峰. 交叉圆柱滚子型偏航轴承结构优化设计[D]. 大连: 大连理工大学, 2014.
|
|
|
[23] |
尹诗, 侯国莲, 胡晓东, 等. 风力发电机组发电机前轴承故障预警及辨识[J]. 仪器仪表学报, 2020, 41(5): 242-251.
|
|
|
[24] |
杨洁, 万安平, 王景霖, 等. 基于多传感器融合卷积神经网络的航空发动机轴承故障诊断[J]. 中国电机工程学报, 2022, 42(13): 4933-4942.
|
|
|
[25] |
刘仓, 童靳于, 包家汉, 等. 基于多传感器两级特征融合的滚动轴承故障诊断方法[J]. 振动与冲击, 2022, 41(8): 199-207, 259.
|
|
|
[26] |
柳晨曦. 大型低速重载回转支承复合故障特征提取与模式识别[D]. 大连: 大连理工大学, 2018.
|
|
[1] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
[2] | CHEN Qile, QIAN Pengfei, KONG Zhijie, QIAO Caixia, ZHANG Ruiheng. Anti-sweep-jamming Method for PD Radar Based on Variational Signal Decomposition [J]. Acta Armamentarii, 2024, 45(6): 2076-2084. |
[3] | JIAO Xiaolong, XU Yuxin, WU Zongya, ZHOU Tong. Damage Effect of Thermobaric Warhead with Reactive Casing on Phased-array Radar Antenna [J]. Acta Armamentarii, 2024, 45(6): 1725-1734. |
[4] | LI Zhengjie, CHEN Hongyin, XIE Junwei, ZHANG Haowei, LIU Bin. A Power Allocation Method for Three-dimensional Maneuvering Tracking of Colocated MIMO Radar Based on Air Defense QoS Model [J]. Acta Armamentarii, 2024, 45(4): 1321-1331. |
[5] | XIONG Guangming, LUO Zhen, SUN Dong, TAO Junfeng, TANG Zeyue, WU Chao. Object Detection and Tracking for Unmanned Vehicles Based on Fusion of Infrared Camera and MMW Radar in Smoke-obscured Environment [J]. Acta Armamentarii, 2024, 45(3): 893-906. |
[6] | ZHANG Liang, DU Qinglei, ZHANG Zhaojian, WANG Yongliang. A Dense False-target Jamming Main-lobe Blanking Algorithm in Slow-time Dimension [J]. Acta Armamentarii, 2024, 45(2): 606-617. |
[7] | HUANG Jia, CHANG Sijiang, CHEN Qi, ZHANG Haiyang. Data-Driven-Based Impact Time Control Guidance Law Independent of Time-to-Go [J]. Acta Armamentarii, 2023, 44(8): 2299-2309. |
[8] | ZHENG Zexin, LI Wei, ZOU Kun, LI Yanfu. Anti-jamming Waveform Design of Ground-based Air Surveillance Radar Based on Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(5): 1422-1430. |
[9] | KONG Yameng, WANG Guoyu, FENG Dejun, WANG Junjie. Phase-switched Screen Periodic Non-uniform Intermittent Modulation Method [J]. Acta Armamentarii, 2023, 44(4): 1209-1216. |
[10] | WEI Wenbin, PENG Ruihui, SUN Dianxing, ZHANG Jialin, WANG Xiangwei. Recognition of Dense False Target Jamming with Large Fluctuations Using Frequency Response Characteristics [J]. Acta Armamentarii, 2023, 44(10): 3204-3217. |
[11] | YANG Xin, WEN Qiangmiao, LI Sizhen, CHENG De, SHU Wenxiang, BAI Jingying. Data-driven Heat Treatment Technology for Spacecraft Products [J]. Acta Armamentarii, 2022, 43(S2): 170-177. |
[12] | LI Haipeng, FENG Dazheng, CHEN Shaofeng. An Optimal Deployment Method of Heterogeneous Multi-static Radars for Linear Barrier Coverage [J]. Acta Armamentarii, 2022, 43(8): 1858-1867. |
[13] | XU Xiyi, TAN Gewei, LI Biao. Two-step Imaging of Bistatic SAR with Curvilinear Trajectory Based on Space-Variant Separation [J]. Acta Armamentarii, 2022, 43(6): 1365-1375. |
[14] | YUAN Hang, LUO Ying, LI Kaiming, CHEN Yijun, ZHANG Qun. Fine Recognition of Human Gait with Vortex Electromagnetic Wave Radar [J]. Acta Armamentarii, 2022, 43(5): 1167-1174. |
[15] | YIN Kangyin,JIANG Zhimin,FENG Yajun. Two-stage Optimization Strategy of Assignment for Operating Modes of Early Warning Radar [J]. Acta Armamentarii, 2022, 43(2): 328-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||