Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (10): 3674-3685.doi: 10.12382/bgxb.2023.0713
Previous Articles Next Articles
DANG Wanying1,2, ZHOU Lelai1,2,*(), LI Yibin1,2, ZHANG Chen1,2
Received:
2023-08-01
Online:
2023-09-25
Contact:
ZHOU Lelai
CLC Number:
DANG Wanying, ZHOU Lelai, LI Yibin, ZHANG Chen. Neural Network Planning Method for Optimal Off-road Configuration of Modular Robots[J]. Acta Armamentarii, 2024, 45(10): 3674-3685.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
沟壑宽度/m | 3 |
横向最大坡度/(°) | 5 |
最大可通行宽度/m | 1 |
纵向最大上升坡度/(°) | 15 |
Table 1 Input set parameters
参数 | 数值 |
---|---|
沟壑宽度/m | 3 |
横向最大坡度/(°) | 5 |
最大可通行宽度/m | 1 |
纵向最大上升坡度/(°) | 15 |
参数 | 参数 |
---|---|
车身尺寸(长×宽×高)/m | 0.7×0.3×0.6 |
对接机构总长度/m | 0.1 |
车体质量/kg | 30 |
离地间隙/m | 0.55 |
接近角/(°) | 75 |
离去角/(°) | 60 |
运动速度/(m·s-1) | 0.5 |
Table 3 Parameters of robot module trolley
参数 | 参数 |
---|---|
车身尺寸(长×宽×高)/m | 0.7×0.3×0.6 |
对接机构总长度/m | 0.1 |
车体质量/kg | 30 |
离地间隙/m | 0.55 |
接近角/(°) | 75 |
离去角/(°) | 60 |
运动速度/(m·s-1) | 0.5 |
构型 | 通过性 | 能耗/J | 时间/s |
---|---|---|---|
1×6刚性 | × | × | × |
1×6柔性 | × | × | × |
2×3刚性 | √ | 4837.5 | 43 |
2×3柔性 | √ | 4837.5 | 43 |
3×2刚性 | √ | 5017.5 | 44.6 |
3×2柔性 | √ | 5017.5 | 44.6 |
4×3刚性 | √ | 5197.5 | 46.2 |
4×3柔性 | √ | 5197.5 | 46.2 |
5×2刚性 | √ | 5377.5 | 47.8 |
5×2柔性 | √ | 5377.5 | 47.8 |
6×1刚性 | × | × | × |
6×1刚性 | × | × | × |
Table 4 Optimization versus simulated results
构型 | 通过性 | 能耗/J | 时间/s |
---|---|---|---|
1×6刚性 | × | × | × |
1×6柔性 | × | × | × |
2×3刚性 | √ | 4837.5 | 43 |
2×3柔性 | √ | 4837.5 | 43 |
3×2刚性 | √ | 5017.5 | 44.6 |
3×2柔性 | √ | 5017.5 | 44.6 |
4×3刚性 | √ | 5197.5 | 46.2 |
4×3柔性 | √ | 5197.5 | 46.2 |
5×2刚性 | √ | 5377.5 | 47.8 |
5×2柔性 | √ | 5377.5 | 47.8 |
6×1刚性 | × | × | × |
6×1刚性 | × | × | × |
参数 | 数值 |
---|---|
车身尺寸(长×宽×高)/m | 0.22×0.26×0.2 |
对接机构总长度/m | 0.07 |
车体质量/kg | 2.9 |
离地间隙/m | 0.05 |
接近角/(°) | 69 |
离去角/(°) | 78 |
运动速度/(m·s-1) | 1.0 |
Table 5 Mecanum wheel platform parameters
参数 | 数值 |
---|---|
车身尺寸(长×宽×高)/m | 0.22×0.26×0.2 |
对接机构总长度/m | 0.07 |
车体质量/kg | 2.9 |
离地间隙/m | 0.05 |
接近角/(°) | 69 |
离去角/(°) | 78 |
运动速度/(m·s-1) | 1.0 |
序号 | 遗传算法 | 神经网络 |
---|---|---|
1 | 2.77 | 1.41 |
2 | 3.402 | 1.58 |
3 | 2.46 | 1.09 |
Table 6 Neural network operation times
序号 | 遗传算法 | 神经网络 |
---|---|---|
1 | 2.77 | 1.41 |
2 | 3.402 | 1.58 |
3 | 2.46 | 1.09 |
[1] |
沙莎, 王辉平. 轮式移动机器人滑移轨迹跟踪控制策略研究[J]. 机床与液压, 2023, 51(9): 62-69.
|
|
|
[2] |
刘松, 柴汇, 李贻斌, 等. 电动力液压驱动四足双臂机器人的设计与实现[J]. 机器人, 2022, 44(6): 649-659.
|
|
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
夏平, 朱新坚, 费燕琼. 一种新型自重构模块机器人的设计和运动策略[J]. 中国机械工程, 2006(15): 1549-1552.
|
|
|
[8] |
费燕琼, 夏振兴, 夏平. 自重构机器人的基本模块结构设计与分析[J]. 中国机械工程, 2007(9): 1085-1088.
|
|
|
[9] |
杨振, 付庄, 管恩广, 等. M-Lattice模块机器人的运动学分析及构型优化[J]. 上海交通大学学报, 2017, 51(10): 1153-1159.
doi: 10.16183/j.cnki.jsjtu.2017.10.001 |
|
|
[10] |
|
[11] |
|
[12] |
|
[13] |
高九州, 徐威峰, 张立辉, 等. 基于改进A*算法的无人机避障航线规划[J]. 现代电子技术, 2023, 46(8): 181-186.
|
|
|
[14] |
陈春良, 齐鸥, 魏兆磊, 等. 基于蒙特卡洛仿真和遗传算法的车辆装备保障运输网络优化[J]. 兵工学报, 2016, 37(1): 114-121.
doi: 10.3969/j.issn.1000-1093.2016.01.018 |
|
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
pmid: 18267783 |
[20] |
|
[21] |
|
[22] |
|
[1] | XIA Huanxiong, LI Kang, GAO Feng, LIU Jianhua, AO Xiaohui. Intelligent Optimization for Forming Quality of Melt-cast Explosives Based on the Evolution Characteristics of Solidification Front [J]. Acta Armamentarii, 2024, 45(9): 2936-2950. |
[2] | SU Sheng, GU Sen, SONG Zhiqiang, LIU Ping. Military Cockpit Color Design Method Based on Deep Representation Learning and Genetic Algorithm [J]. Acta Armamentarii, 2024, 45(4): 1060-1069. |
[3] | MA Weining, HU Qiwei, CHEN Jing, JIA Xisheng. Joint Optimization of Selective Maintenance Decision and Mission Assignment for Equipment Groups [J]. Acta Armamentarii, 2024, 45(2): 407-416. |
[4] | QIN Guohua, LOU Weida, LIN Feng, XU Yong. A Novel Method of Stability Judgment and Milling Parameter Optimization Based on Cotes Integration Method and Neural Network [J]. Acta Armamentarii, 2024, 45(2): 516-526. |
[5] | LIU Zichang, LI Siyu, PEI Mochao, LIU Jie, MENG Shuo, WU Weiyi. Fault Diagnosis Method for Diesel Engine Based on Texture Analysis [J]. Acta Armamentarii, 2024, 45(2): 684-694. |
[6] | TIAN Hengxu, LIN Shengye, LI Hao, WU Yinghao, WANG Maosen, DAI Jinsong. Fatigue Optimization of Sell Extractor Skateboard in a High-firing-speed Automatic Gun Based on Kriging Model [J]. Acta Armamentarii, 2024, 45(10): 3585-3595. |
[7] | YE Wenyu, WANG Chunyang, YU Jinyang, TUO Mingkan, WANG Zishuo. Multi-beam Scanning of Liquid Crystal Optical Phased Array Based on Greedy Algorithm [J]. Acta Armamentarii, 2023, 44(9): 2650-2660. |
[8] | CHEN Song, ZHU Dongsheng, ZUO Qinwen, HAN Chaoshuai. GA-PS Based Three-dimensional Space Source Inversion Algorithm [J]. Acta Armamentarii, 2023, 44(8): 2503-2520. |
[9] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[10] | LIU Yan, WANG Baichuan, YAN Junbo, YAN Zichen, SHI Zhenqing, HUANG Fenglei. Dynamic Response of Honeycomb Sandwich Plate with Negative Poisson’s Ratio under Penetration [J]. Acta Armamentarii, 2023, 44(7): 1938-1953. |
[11] | DU Weiwei, CHEN Xiaowei. Task Assignment and Optimization Method of Tactical-Level Army Operations [J]. Acta Armamentarii, 2023, 44(5): 1431-1442. |
[12] | WU Weiyi, JIA Yunxian, SHI Xianming, LIU Bin, LIU Jie, YIN Shizhuang, ZHU Xi. Optimization of Two-Echelon Configuration of Maintenance Supply for Synthetic Forces based on Task Evolution Importance [J]. Acta Armamentarii, 2023, 44(2): 591-604. |
[13] | WAN Xinwei, WANG Jing, YANG Hui, LI Yi, ZHANG Yuanzai, WANG Lu. A Random Error Compensation Method of MEMS Gyroscope Based on BP Neural Network Combined with PSO-Optimized Kalman Filter [J]. Acta Armamentarii, 2023, 44(2): 556-565. |
[14] | TAO Junfeng, LIU Hai’ou, GUAN Haijie, CHEN Huiyan, ZANG Zheng. Path Planning of Unmanned Tracked Vehicle Based on Terrain Traversability Estimation [J]. Acta Armamentarii, 2023, 44(11): 3320-3332. |
[15] | CHEN Liang, LIU Rong-zhong, GUO Rui, ZHAO Bo-bo, LIU Lei, YANG Yong-liang. Multi-objective Optimization on Aerodynamic Shape of Projectile with Twisted Empennages [J]. Acta Armamentarii, 2016, 37(7): 1187-1193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||