Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (10): 3585-3595.doi: 10.12382/bgxb.2023.0722
Previous Articles Next Articles
TIAN Hengxu1, LIN Shengye1, LI Hao2, WU Yinghao1, WANG Maosen1, DAI Jinsong1,*()
Received:
2023-08-07
Online:
2024-03-04
Contact:
DAI Jinsong
CLC Number:
TIAN Hengxu, LIN Shengye, LI Hao, WU Yinghao, WANG Maosen, DAI Jinsong. Fatigue Optimization of Sell Extractor Skateboard in a High-firing-speed Automatic Gun Based on Kriging Model[J]. Acta Armamentarii, 2024, 45(10): 3585-3595.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
密度/(kg·m-3) | 7820 |
弹性模量/MPa | 206000 |
泊松比 | 0.3 |
屈服强度/MPa | 400 |
Table 1 Shell material parameters
参数 | 数值 |
---|---|
密度/(kg·m-3) | 7820 |
弹性模量/MPa | 206000 |
泊松比 | 0.3 |
屈服强度/MPa | 400 |
参数 | 数值 |
---|---|
密度/(kg·m-3) | 7800 |
弹性模量/MPa | 213000 |
泊松比 | 0.3 |
弹性极限/MPa | 1482 |
屈服强度/MPa | 1620 |
强度极限/MPa | 1705 |
Table 2 Mechanical properties of a high-strength alloy steel [12]
参数 | 数值 |
---|---|
密度/(kg·m-3) | 7800 |
弹性模量/MPa | 213000 |
泊松比 | 0.3 |
弹性极限/MPa | 1482 |
屈服强度/MPa | 1620 |
强度极限/MPa | 1705 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
σ'f/MPa | 1705 | ε'f | 0.221 |
b | -0.087 | c | -0.58 |
Ef/MPa | 213000 |
Table 3 E-N curve parameter values
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
σ'f/MPa | 1705 | ε'f | 0.221 |
b | -0.087 | c | -0.58 |
Ef/MPa | 213000 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
θ/(°) | 90~110 | B/mm | 6~10 |
h/mm | 10~18 | R/mm | 0.4~4 |
Table 4 Parameter setting of each design variable
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
θ/(°) | 90~110 | B/mm | 6~10 |
h/mm | 10~18 | R/mm | 0.4~4 |
序号 | θ/(°) | h/mm | R/mm | B/1 | T/发 |
---|---|---|---|---|---|
1 | 93.11 | 10.83 | 1.64 | 6.05 | 707 |
2 | 92.23 | 13.04 | 1.90 | 6.97 | 500 |
3 | 93.97 | 14.76 | 2.81 | 7.73 | 855 |
4 | 90.44 | 16.28 | 3.75 | 8.63 | 417 |
5 | 91.34 | 17.01 | 1.07 | 9.83 | 205 |
6 | 95.56 | 10.01 | 0.68 | 6.56 | 414 |
7 | 94.76 | 12.14 | 2.08 | 7.18 | 476 |
8 | 97.16 | 13.79 | 2.66 | 8.35 | 363 |
9 | 97.94 | 15.64 | 4.00 | 8.82 | 609 |
10 | 96.39 | 17.54 | 1.38 | 9.25 | 392 |
11 | 101.79 | 11.60 | 2.44 | 6.22 | 1054 |
12 | 99.69 | 11.82 | 3.47 | 7.59 | 1124 |
13 | 100.42 | 14.32 | 1.43 | 8.07 | 323 |
14 | 98.00 | 15.30 | 0.79 | 8.97 | 403 |
15 | 99.32 | 16.75 | 2.14 | 9.61 | 425 |
16 | 105.79 | 11.15 | 0.51 | 6.37 | 412 |
17 | 102.82 | 12.59 | 3.14 | 6.85 | 613 |
18 | 104.15 | 14.13 | 0.92 | 8.23 | 293 |
19 | 104.74 | 14.95 | 1.23 | 8.49 | 253 |
20 | 102.31 | 17.83 | 2.30 | 9.39 | 426 |
21 | 107.26 | 12.42 | 1.77 | 7.40 | 493 |
22 | 108.99 | 13.22 | 2.88 | 7.88 | 415 |
23 | 109.62 | 15.98 | 3.59 | 9.15 | 603 |
24 | 108.27 | 16.44 | 3.37 | 9.94 | 444 |
Table 5 Sample point test design and corresponding simulated results
序号 | θ/(°) | h/mm | R/mm | B/1 | T/发 |
---|---|---|---|---|---|
1 | 93.11 | 10.83 | 1.64 | 6.05 | 707 |
2 | 92.23 | 13.04 | 1.90 | 6.97 | 500 |
3 | 93.97 | 14.76 | 2.81 | 7.73 | 855 |
4 | 90.44 | 16.28 | 3.75 | 8.63 | 417 |
5 | 91.34 | 17.01 | 1.07 | 9.83 | 205 |
6 | 95.56 | 10.01 | 0.68 | 6.56 | 414 |
7 | 94.76 | 12.14 | 2.08 | 7.18 | 476 |
8 | 97.16 | 13.79 | 2.66 | 8.35 | 363 |
9 | 97.94 | 15.64 | 4.00 | 8.82 | 609 |
10 | 96.39 | 17.54 | 1.38 | 9.25 | 392 |
11 | 101.79 | 11.60 | 2.44 | 6.22 | 1054 |
12 | 99.69 | 11.82 | 3.47 | 7.59 | 1124 |
13 | 100.42 | 14.32 | 1.43 | 8.07 | 323 |
14 | 98.00 | 15.30 | 0.79 | 8.97 | 403 |
15 | 99.32 | 16.75 | 2.14 | 9.61 | 425 |
16 | 105.79 | 11.15 | 0.51 | 6.37 | 412 |
17 | 102.82 | 12.59 | 3.14 | 6.85 | 613 |
18 | 104.15 | 14.13 | 0.92 | 8.23 | 293 |
19 | 104.74 | 14.95 | 1.23 | 8.49 | 253 |
20 | 102.31 | 17.83 | 2.30 | 9.39 | 426 |
21 | 107.26 | 12.42 | 1.77 | 7.40 | 493 |
22 | 108.99 | 13.22 | 2.88 | 7.88 | 415 |
23 | 109.62 | 15.98 | 3.59 | 9.15 | 603 |
24 | 108.27 | 16.44 | 3.37 | 9.94 | 444 |
序号 | θ/(°) | h/mm | R/mm | b/mm | T/发 |
---|---|---|---|---|---|
1 | 100.71 | 11.55 | 3.07 | 7.08 | 1011 |
2 | 100.67 | 11.07 | 3.27 | 7.03 | 851 |
3 | 101.94 | 11.83 | 3.74 | 7.13 | 794 |
4 | 100.79 | 11.89 | 2.81 | 7.10 | 502 |
5 | 99.87 | 11.57 | 3.45 | 7.49 | 1052 |
Table 6 Newly added sample points and corresponding simulated results
序号 | θ/(°) | h/mm | R/mm | b/mm | T/发 |
---|---|---|---|---|---|
1 | 100.71 | 11.55 | 3.07 | 7.08 | 1011 |
2 | 100.67 | 11.07 | 3.27 | 7.03 | 851 |
3 | 101.94 | 11.83 | 3.74 | 7.13 | 794 |
4 | 100.79 | 11.89 | 2.81 | 7.10 | 502 |
5 | 99.87 | 11.57 | 3.45 | 7.49 | 1052 |
[1] |
翟剑锋, 戴劲松, 王茂森, 等. 某高速自动机不同工作模式条件下断裂底火运动轨迹分析[J]. 兵工自动化, 2021, 40(3): 90-96.
|
|
|
[2] |
戴劲松, 王茂森, 苏晓鹏, 等. 现代火炮自动机设计理论[M]. 北京: 国防工业出版社, 2018.
|
|
|
[3] |
翟啸雷, 戴劲松, 王茂森, 等. 某新型转膛自动机换向器的疲劳寿命分析[J]. 机械制造与自动化, 2021, 50(4): 40-42, 52.
|
|
|
[4] |
易当祥, 刘春和, 吕国志, 等. 自行火炮行动系统关重件的疲劳寿命仿真[J]. 兵工学报, 2007, 28(2): 138-143.
|
|
|
[5] |
邓威, 毛保全, 冯帅, 等. 基于Kriging模型的武器站炮口扰动优化[J]. 兵工学报, 2016, 37(10): 1795-1802.
doi: 10.3969/j.issn.1000-1093.2016.10.005 |
doi: 10.3969/j.issn.1000-1093.2016.10.005 |
|
[6] |
|
[7] |
苏伟, 高正红, 夏露. 一种代理遗传算法及其在气动优化设计中的应用[J]. 西北工业大学学报, 2008(3): 303-307.
|
|
|
[8] |
孟凡念, 张子琦, 苏晓龙, 等. 基于Kriging代理模型的离心通风机叶片优化[J]. 液压与气动, 2023, 47(5): 85-91.
doi: 10.11832/j.issn.1000-4858.2023.05.011 |
|
|
[9] |
张纯, 何君儒, 周宇轩, 等. 基于深度神经网络代理模型的盾构隧道密封垫断面优化[J]. 工程力学, 2023(7): 137-144.
|
|
|
[10] |
谭添. 某新型低后坐力自动机动态特性分析[D]. 南京: 南京理工大学, 2019.
|
|
|
[11] |
谭波, 侯健, 可学为, 等. 舰炮抽壳机构抽壳过程仿真分析[J]. 火炮发射与控制学报, 2014, 35(4): 49-52.
|
|
|
[12] |
罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
doi: 10.11900/0412.1961.2019.00328 |
doi: 10.11900/0412.1961.2019.00328 |
|
[13] |
张福明, 路明, 郝佳胜. 发动机工况对缸盖低周疲劳影响分析与研究[J]. 内燃机与配件, 2023(4): 49-51.
|
|
|
[14] |
|
[15] |
张发平, 张书畅, 武锴, 等. 基于代理模型进化的履带车辆动力学参数优化[J]. 兵工学报, 2023, 44(1): 27-39.
doi: 10.12382/bgxb.2022.0266 |
doi: 10.12382/bgxb.2022.0266 |
|
[16] |
徐杰, 鲁海燕, 赵金金, 等. 拉丁超立方抽样的自适应高斯小孔成像蝴蝶优化算法[J]. 计算机应用研究, 2022, 39(9): 2701-2708, 2751.
|
|
|
[17] |
|
[18] |
毛星波, 盛冬发, 李忠君, 等. 基于Kriging-SBO算法的拱桥拱轴线优化设计[J]. 中山大学学报(自然科学版), 2023, 62(4): 139-146.
|
|
|
[19] |
张建侠, 马义中, 欧阳林寒, 等. 基于Kriging模型的多点加点准则和并行代理优化算法[J]. 系统工程理论与实践, 2020, 40(1): 251-261.
doi: 10.12011/1000-6788-2018-0757-11 |
|
|
[20] |
孙泽刚, 肖世德, 王德华, 等. 液压滑阀V型节流槽气穴流仿真分析及结构优化研究[J]. 兵工学报, 2015, 36(2): 345-354.
doi: 10.3969/j.issn.1000-1093.2015.02.023 |
|
|
[21] |
薛小锋, 王远卓, 路成. 基于改进Kriging模型的舰载机着舰下沉速度影响性分析研究[J]. 西北工业大学学报, 2019, 37(2): 218-224.
|
|
|
[22] |
|
[23] |
|
[24] |
许耀峰, 王军, 刘朋科, 等. 不同持续射击发数对火炮身管寿命的影响[J]. 兵工学报, 2023, 44(4): 1034-1040.
|
doi: 10.12382/bgxb.2021.0852 |
|
[25] |
黄进峰, 张津, 陈俊宇, 等. 火炮身管失效机理与炮钢的发展[J]. 火炮发射与控制学报, 2023, 44(1): 10-18, 29.
|
|
[1] | XIA Huanxiong, LI Kang, GAO Feng, LIU Jianhua, AO Xiaohui. Intelligent Optimization for Forming Quality of Melt-cast Explosives Based on the Evolution Characteristics of Solidification Front [J]. Acta Armamentarii, 2024, 45(9): 2936-2950. |
[2] | ZUO Mingshuo, XU Yuxin, LI Yongpeng, LI Xudong, GUO Delong, YANG Xiang. Dynamic Response of Directional Blast Relief Container Structure for Civil Aircraft under Internal Explosive Loading [J]. Acta Armamentarii, 2024, 45(7): 2383-2392. |
[3] | JIA Jingjing, ZHANG Zhimin, YU Jianmin, XUE Yong, WU Ang. Numerical Simulation of Uniform Extrusion Forming and Die Structure Optimization of Lightweight Empennage-shaped Component Based on Response Surface Method [J]. Acta Armamentarii, 2024, 45(6): 1824-1839. |
[4] | SU Sheng, GU Sen, SONG Zhiqiang, LIU Ping. Military Cockpit Color Design Method Based on Deep Representation Learning and Genetic Algorithm [J]. Acta Armamentarii, 2024, 45(4): 1060-1069. |
[5] | YANG Tuo, XIONG Shihui, WANG Jingcheng, ZHAO Xiangrun, WEN Yuquan. Actuation Noise Prediction and Decoupling of Pyrotechnic Separation Nut [J]. Acta Armamentarii, 2024, 45(3): 763-773. |
[6] | MA Weining, HU Qiwei, CHEN Jing, JIA Xisheng. Joint Optimization of Selective Maintenance Decision and Mission Assignment for Equipment Groups [J]. Acta Armamentarii, 2024, 45(2): 407-416. |
[7] | QIN Guohua, LOU Weida, LIN Feng, XU Yong. A Novel Method of Stability Judgment and Milling Parameter Optimization Based on Cotes Integration Method and Neural Network [J]. Acta Armamentarii, 2024, 45(2): 516-526. |
[8] | LIU Zichang, LI Siyu, PEI Mochao, LIU Jie, MENG Shuo, WU Weiyi. Fault Diagnosis Method for Diesel Engine Based on Texture Analysis [J]. Acta Armamentarii, 2024, 45(2): 684-694. |
[9] | DANG Wanying, ZHOU Lelai, LI Yibin, ZHANG Chen. Neural Network Planning Method for Optimal Off-road Configuration of Modular Robots [J]. Acta Armamentarii, 2024, 45(10): 3674-3685. |
[10] | JI Xinbo, LU Weijian, LÜ Chen, WANG Xi, LIAN Zheng, HE Li. Dynamic Deflection Response of Typical Pavement Structure under Different Impact Loads [J]. Acta Armamentarii, 2024, 45(1): 299-311. |
[11] | LIU Jinchun, WANG Yuying, SUN Ni. Numerical Analysis of Gas Explosion Resistance of Two-way Masonry Walls Strengthened by Spraying Polyurea [J]. Acta Armamentarii, 2023, 44(S1): 138-143. |
[12] | YE Wenyu, WANG Chunyang, YU Jinyang, TUO Mingkan, WANG Zishuo. Multi-beam Scanning of Liquid Crystal Optical Phased Array Based on Greedy Algorithm [J]. Acta Armamentarii, 2023, 44(9): 2650-2660. |
[13] | CHEN Song, ZHU Dongsheng, ZUO Qinwen, HAN Chaoshuai. GA-PS Based Three-dimensional Space Source Inversion Algorithm [J]. Acta Armamentarii, 2023, 44(8): 2503-2520. |
[14] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[15] | LIU Yan, WANG Baichuan, YAN Junbo, YAN Zichen, SHI Zhenqing, HUANG Fenglei. Dynamic Response of Honeycomb Sandwich Plate with Negative Poisson’s Ratio under Penetration [J]. Acta Armamentarii, 2023, 44(7): 1938-1953. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||