| [1] |
LI X L, ZANG Y, MU L, et al. Erosion analysis of machine gun barrel and lifespan prediction under typical shooting conditions[J]. Wear, 2020, 444: 203177.
|
| [2] |
HU C B, ZHANG X B. Performance variation of a transient dynamic fluid-structure interaction system in different life stages and methods for maintaining the performance[J]. Applied Thermal Engineering, 2018, 130: 1012-1021.
doi: 10.1016/j.applthermaleng.2017.11.075
URL
|
| [3] |
焦贵伟, 胡朝根. 火炮身管寿命评估预测[J]. 兵器装备工程学报, 2018, 39(5): 66-69, 74.
|
|
JIAO G W, HU C G. Research of evaluation and prediction technology for gun barrel life[J]. Journal of Ordnance Equipment Engineering, 2018, 39(5): 66-69, 74. (in Chinese)
|
| [4] |
许耀峰, 单春来, 刘朋科, 等. 火炮身管延寿方法研究综述[J]. 火炮发射与控制学报, 2019, 40(4): 90-95.
|
|
XU Y F, SHAN C L, LIU P K, et al. Review of the research on gun barrel life-span prolongation[J]. Journal of Gun Launch & Control, 2019, 40(4): 90-95. (in Chinese)
|
| [5] |
陈永才, 宋遒志, 王建中. 国内外火炮身管延寿技术研究进展[J]. 兵工学报, 2006, 27(2): 330-334.
|
|
CHEN Y C, SONG Q Z, WANG J Z. New technologies to extend the erosion life of gun barrel[J]. Acta Armamentarii, 2006, 27(2): 330-334. (in Chinese)
|
| [6] |
蒋泽一, 李强, 薄玉成. 火炮身管寿命研究[J]. 机械工程与自动化, 2014, 43(2): 221-222.
|
|
JIANG Z Y, LI Q, BO Y C. Study of life of gun barrel[J]. Mechanical Engineering & Automation, 2014, 43(2): 221-222. (in Chinese)
|
| [7] |
樊伟, 田甜, 崔艳芳, 等. 采用爆炸喷涂法揭示新型(Sm1-XGdX)2Zr2O7)缓烧蚀材料隔热机理[J]. 材料导报, 2019, 33(增刊2): 134-137, 153.
|
|
FAN W, TIAN T, CUI Y F, et al. Reveal thermal insulation mechanism of the new type erosion reducing materials of (Sm1-XGdX)2Zr2O7) by detonation spraying[J]. Materials Report, 2019, 33(S2): 134-137, 153. (in Chinese)
|
| [8] |
张小兵. 枪炮内弹道学[M]. 北京: 北京理工大学出版社, 2014: 50-55.
|
|
ZHANG X B. Interior ballistics of guns[M]. Beijing: Beijing Institute of Technology Press, 2014: 50-55. (in Chinese)
|
| [9] |
SOPOK S, RICKARD C, DUNN S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part one: theories and mechanisms[J]. Wear, 2005, 258(1-4): 659-670.
doi: 10.1016/j.wear.2004.09.031
URL
|
| [10] |
韦丁, 王琼林, 严文荣, 等. 降低身管烧蚀性研究进展[J]. 火炸药学报, 2020, 43(4): 351-361.
|
|
WEI D, WANG Q L, YAN W R, et al. Research progress on reducing erosivity of gun barrel[J]. Chinese Journal of Explosives & Propellants, 2020, 43(4): 351-361. (in Chinese)
|
| [11] |
SUN Y J, ZHANG X B. Heat transfer analysis of a circular pipe heated internally with a cyclic moving heat source[J]. International Journal of Thermal Sciences, 2015, 90: 279-289.
doi: 10.1016/j.ijthermalsci.2014.12.009
URL
|
| [12] |
DEĞIRMENCI E, DIRIKOLU M H. A thermochemical approach for the determination of convection heat transfer coefficients in a gun barrel[J]. Applied Thermal Engineering, 2012, 37: 275-279.
doi: 10.1016/j.applthermaleng.2011.11.029
URL
|
| [13] |
LAWTON B. Thermal and chemical effects on gun barrel wear[C]// Proceedings of the 8th International Symposium on Ballistics, Florida, US: American Defense Preparedness Association, 1984: 28-36.
|
| [14] |
LAWTON B. Thermo-chemical erosion in gun barrels[J]. Wear, 2001, 251(1-12): 827-838.
doi: 10.1016/S0043-1648(01)00738-4
URL
|
| [15] |
WEI S P, WANG G, ZHAO X H, et al. Experimental study on vacuum carburizing process for low-carbon alloy steel[J]. Journal of Materials Engineering and Performance, 2014, 23(2): 545-550.
doi: 10.1007/s11665-013-0762-1
URL
|
| [16] |
KATEMI R J. Influence of carbonitriding process on phase transformation during case hardening, retained austenite and residual stresses[D]. Bremen, Germany: Universität Bremen, 2019.
|
| [17] |
WU B. Barrel cooling: a key technology for improving gun performance[J]. Journal of Battlefield Technology, 2005, 8(3): 1-5.
|
| [18] |
LAVOIE J. Performance, Stability and erosivity of nitrogen-rich gun propellants[D]. Montreal, Canada: École Polytechnique de Montréal, 2017.
|
| [19] |
KIMURA J. Hydrogen gas erosion of high-energy LOVA propellants[C]// Proceedings of the 16th International Symposium on Ballistics. CA, US: American Defense Preparedness Association, 1996: 307-315.
|
| [20] |
许耀峰, 单春来, 刘朋科, 等. 火炮身管寿终机理及寿命预测方法研究综述[J]. 火炮发射与控制学报, 2020, 41(3): 89-94, 101.
|
|
XU Y F, SHAN C L, LIU P K, et al. Review of the research on failure mechanism and life prediction method of gun barrel[J]. Journal of Pressure Vessel Technology, 2020, 41(3): 89-94, 101. (in Chinese)
|
| [21] |
SCHAEDELI U, ANTENEN D, VAMOS A. Nitroglycerine-free multi-perforated high-performing propellant system: US, 14/345037[P]. 2014- 12-04.
|
| [22] |
COURTY L, GILLARD P, EHRHARDT J, et al. Experimental determination of ignition and combustion characteristics of insensitive gun propellants based on RDX and nitrocellulose[J]. Combustion and Flame, 2021, 229: 111402.
doi: 10.1016/j.combustflame.2021.111402
URL
|
| [23] |
MENDONÇA-FILHO L G, RODRIGUES R L B, ROSATO R, et al. Combined evaluation of nitrocellulose-based propellants: toxicity, performance, and erosivity[J]. Journal of Energetic Materials, 2019, 37(3): 293-308.
doi: 10.1080/07370652.2019.1606867
URL
|
| [24] |
王琳. 125mm穿甲弹装药设计优化探索研究[D]. 南京: 南京理工大学, 2007.
|
|
WANG L. 125mm armour-piercing projectile charge design optimizing and exploring study[D]. Nanjing: Nanjing University of Science & Technology, 2007. (in Chinese)
|
| [25] |
韩寒. 高能低爆温发射药研究[D]. 南京: 南京理工大学, 2010.
|
|
HAN H. Research on high-energy and low detonation temperature propellant[D]. Nanjing: Nanjing University of Science & Technology, 2010. (in Chinese)
|
| [26] |
FU Y, ZHU Y, LIU Z T, et al. Temperature sensitivity coefficients of RDX-based propellants and their mixed charges[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(10): 1589-1597.
doi: 10.1002/prep.v46.10
URL
|
| [27] |
李洪广, 闫军, 杜仕国, 等. 火炮身管缓蚀剂技术研究进展[J]. 火炮发射与控制学报, 2012, 33(4): 103-106.
|
|
LI H G, YAN J, DU S G, et al. Research advance of erosion inhibitor technology in gun barrel[J]. Journal of Gun Launch & Control, 2012, 33(4): 103-106. (in Chinese)
|
| [28] |
WARD J R, BROSSEAU T L. Reduction of heat transfer to high velocity gun barrels by wear-reducing additives[J]. Journal of Heat Transfer, 1978, 100(4): 697-701.
doi: 10.1115/1.3450880
URL
|
| [29] |
LAWTON B. The influence of additives on the temperature, heat transfer, wear, fatigue Life, and self ignition characteristics of a 155 mm gun[J]. Journal of Pressure Vessel Technology, 2003, 125(3): 315-320.
doi: 10.1115/1.1593069
URL
|
| [30] |
BRACUTI A J, FIELD R. Wear reducing additives[R]. NJ, US: Army Armament Research Development and Engineering Center Picatinny Arsenal, 2002.
|
| [31] |
姬月萍, 张玉祥, 卢先明, 等. 新型缓蚀添加剂配方设计研究[J]. 火炸药学报, 2000, 23(4): 39-41.
|
|
JI Y P, ZHANG Y X, LU X M, et al. Study on prescription designed of the new type inhibitor[J]. Chinese Journal of Explosives & Propellants, 2000, 23(4): 39-41. (in Chinese)
|
| [32] |
李强, 魏伦, 崔艳芳, 等. 含新型有机硅缓蚀剂的制备及性能研究[J]. 火炸药学报, 2020, 43(2): 225-229.
|
|
LI Q, WEI L, CUI Y F, et al. Study on preparation and properties of a new type of silicone ablation inhibitor[J]. Chinese Journal of Explosives & Propellants, 2020, 43(2): 225-229. (in Chinese)
|
| [33] |
GOLOVIN V A, TYURINA S A. Microencapsulation of corrosion inhibitors and active additives for anticorrosive protective polymer coatings[J]. International Journal of Corrosion and Scale Inhibition, 2019, 8(2): 179-198.
|
| [34] |
YAN J, LIN S S, WANG M Q, et al. Preparation and characterization of metatitanic acid/urea‐formaldehyde microcapsules as wear‐reducing additives[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(11): 1805-1812.
doi: 10.1002/prep.v45.11
URL
|
| [35] |
LIN S S, YAN J, LI H G, et al. Inhibitor performance and the preparation study of urea formaldehyde resin matrix composite particle[C]// Proceedings of the 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016). Paris, France: Atlantis Press, 2016: 312-316.
|
| [36] |
LI H G, LIN S S, DU S G, et al. Preparation and characterization of silicone Oil/UF resin microcapsules as erosion inhibitor[J]. Key Engineering Materials, 2017, 723: 481-485.
doi: 10.4028/www.scientific.net/KEM.723
URL
|
| [37] |
MANNING T, FIELD R, KLINGAMAN K, et al. Innovative boron nitride-doped propellants[J]. Defence Technology, 2016, 12(2): 69-80.
doi: 10.1016/j.dt.2015.10.001
URL
|
| [38] |
MATTER P H, HOLT C T, BEACHY M G. Method for producing BN-based nanoparticles and products therefrom: U. S. Patent 9, 045, 623[P]. 2015-06-02.
|
| [39] |
宋遒志, 王建中, 陈永才. 基于纳米材料改性发射药的身管延寿技术研究[J]. 北京理工大学学报, 2007, 27(8): 662-665.
|
|
SONG Q Z, WANG J Z, CHEN Y C. Research on technology for increasing the service life of gun barrel by adding namomaterial to the propellant[J]. Transactions of Beijing Insttitute Technology, 2007, 27(8): 662-665. (in Chinese)
|
| [40] |
陈永才, 宋遒志, 王建中. 含纳米添加剂发射药的烧蚀性能研究[J]. 兵工学报, 2007, 28(3): 329-331.
|
|
CHEN Y C, SONG Q Z, WANG J Z. Thermochemical erosion of propellant with nanometer additives[J]. Acta Armamentarii, 2007, 28(3): 329-331. (in Chinese)
|
| [41] |
宋遒志, 王建中, 陈永才, 等. 发射药中纳米材料的分散性对身管延寿的影响研究[J]. 兵工学报, 2009, 30(3): 289-294.
|
|
SONG Q Z, WANG J Z, CHEN Y C, et al. Influence of dispersing property of nanomaterial mixed into propellant on the service life of gun barrel[J]. Acta Armamentarii, 2009, 30(3): 289-294. (in Chinese)
|
| [42] |
SUN N, TIAN C, XIAO Z G. Surface migration and enrichment of fluorinated TiO2 nanocomposite additives inside Propellants[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(5): 798-805.
doi: 10.1002/prep.v41.5
URL
|
| [43] |
SUN N, XIAO Z G. Robust microencapsulated silicone oil with a hybrid shell for reducing propellant erosion[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(2): 151-155.
doi: 10.1002/prep.v43.2
URL
|
| [44] |
白德忠. 身管失效与炮钢材料[M]. 北京: 兵器工业出版社, 1989: 64-82.
|
|
BAI D Z. Failure of gun barrel and gun steel material[M]. Beijing: Publishing House of Ordnance Industry, 1989: 64-82. (in Chinese)
|
| [45] |
VOGELSANGER B, OSSOLA B, HUBER A, et al. Use of a propellant powder: US, 14/128443[P]. 2014-11-06.
|
| [46] |
赵强, 刘波, 刘少武, 等. 堵孔钝感高能叠氮硝胺发射药的性能[J]. 含能材料, 2020, 28(3): 242-247.
|
|
ZHAO Q, LIU B, LIU S W, et al. Performance of plugged and insensitive high-energy azidonitramine gun propellant[J]. Chinese Journal of Energetic Materials, 2020, 28(3): 242-247. (in Chinese)
|
| [47] |
赵强, 刘波, 刘少武, 等. 降低发射装药弹道温度系数技术的国内外研究进展[J]. 火炸药学报, 2019, 42(6): 540-547.
|
|
ZHAO Q, LIU B, LIU S W, et al. Research progress at home and abroad on the technology of reducing ballistic temperature coefficient of gun propellant charge[J]. Chinese Journal of Explosives & Propellants, 2019, 42(6): 540-547. (in Chinese)
|
| [48] |
JARAMAZ S, MICKOVIĆ D, ELEK P. Determination of gun propellants erosivity: experimental and theoretical studies[J]. Experimental thermal and fluid science, 2010, 34(6): 760-765.
doi: 10.1016/j.expthermflusci.2010.01.005
URL
|
| [49] |
COMTOIS E, FAVIS B D, DUBOIS C. Linear burning rate and erosivity properties of nitrocellulose propellant formulations plasticized by glycidyl szide polymer and nitroglycerine[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(3): 494-504.
doi: 10.1002/prep.v46.3
URL
|
| [50] |
LAVOIE J, PETRE C-F, DUBOIS C. Erosivity and performance of nitrogen-rich propellants[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(9): 879-892.
doi: 10.1002/prep.v43.9
URL
|
| [51] |
DAMSE R S, SIKDER A K. Suitability of nitrogen rich compounds for gun propellant formulations[J]. Journal of hazardous materials, 2009, 166(2/3): 967-971.
doi: 10.1016/j.jhazmat.2008.12.008
URL
|
| [52] |
BARNETT B, TREXLER M, CHAMPAGNE V. Cold sprayed refractory metals for chrome reduction in gun barrel liners[J]. International Journal of Refractory Metals & Hard Materials, 2015, 7(7): 1-5.
|
| [53] |
AHMAD I, SPIAK W A, JANZ G J. Electrodeposition of tantalum and tantalum-chromium alloys[J]. Journal of Applied Electrochemistry, 1981, 11(3): 291-297.
doi: 10.1007/BF00613946
URL
|
| [54] |
ABDEL HAMID Z, GHAYAD I M, IBRAHIM K M. Electrodeposition and characterization of chromium-tungsten carbide composite coatings from a trivalent chromium bath[J]. Surface and Interface Analysis, 2005, 37(6): 573-579.
doi: 10.1002/(ISSN)1096-9918
URL
|
| [55] |
WANG Z M, HU C D, WANG Y X, et al. Failure mechanism of gun barrel caused by peeling of Cr l ayer and softening of bore matrix[J]. Metals, 2021, 11(2): 348.
doi: 10.3390/met11020348
URL
|
| [56] |
PRAGYA S, SHIKHA A, JANAKARA R, et al. Protective trivalent Cr-based electrochemical coatings for gun barrels[J]. Journal of Alloys and Compounds, 2018, 768(11): 1039-1048.
doi: 10.1016/j.jallcom.2018.07.170
URL
|
| [57] |
TRIPATHI P, KATIYAR P K, RAMKUMAR J, et al. Synergistic role of carbon nanotube and yttria stabilised zirconia reinforcement on wear and corrosion resistance of Cr-based nano-composite coatings[J]. Surface and Coatings Technology, 2020, 385: 125381.
doi: 10.1016/j.surfcoat.2020.125381
URL
|
| [58] |
王升, 熊党生, 李建亮, 等. 熔盐电镀钽及其耐磨损烧蚀性能[J]. 中国表面工程, 2015, 28(2): 101-107.
|
|
WANG S, XIONG D S, LI J L, et al. Wear and erosion resistance properties of electroplating Ta coating in molten salt[J]. China Surface Engineering, 2015, 28(2): 101-107. (in Chinese)
|
| [59] |
王晓明. 炮管外表面锈蚀机理及激光熔覆修复工艺研究[D]. 石家庄: 河北科技大学, 2019.
|
|
WANG X M. Corrosion mechanism of external surface of barrel and laser cladding process[D]. Shijiazhuang: Hebei University of Science & Technology, 2019. (in Chinese)
|
| [60] |
TIAN Z H, ZHAO Y T, JIANG Y J, et al. Investigation of microstructure and properties of FeCoCrNiAlMo x alloy coatings prepared by broadband-beam laser cladding technology[J]. Journal of Materials Science, 2020, 55(10): 4478-4492.
doi: 10.1007/s10853-019-04275-0
|
| [61] |
胡明. 不同制备方法的火炮身管材料Cr涂层性能研究[D]. 太原: 中北大学, 2019.
|
|
HU M. Research on the properties of Cr coatings prepared by three methods on the Surface of gun barrel material[D]. Taiyuan: North University of China, 2019. (in Chinese)
|
| [62] |
门向东, 陶凤和, 甘霖, 等. 炮钢表面等离子堆焊Fe基涂层及其烧蚀行为研究[J]. 北京理工大学学报, 2018, 38(4): 423-429.
|
|
MEN X D, TAO F H, GAN L, et al. Fe-based coatings on gun steel surface deposited by PTA and their erosion behavior[J]. Transactions of Beijing Institute Technology, 2018, 38(4): 423-429. (in Chinese)
|
| [63] |
郭瑞萍, 王宝生. 美国炮管抗烧蚀涂层工艺技术新进展[J]. 新技术新工艺, 2008, 30(9): 87-90, 4.
|
|
GUO R P, WANG B S. New development of anti-ablative coating technology for artillery barrels in the US[J]. New Technology & New Process, 2008, 30(9): 87-90, 4. (in Chinese)
|
| [64] |
WARNECKE C. Method of internally coating a weapon barrel by means of a laser beam: US, 6, 548, 125[P]. 2003-04-15.
|
| [65] |
赵海朝, 梁秀兵, 乔玉林, 等. 激光熔覆高熵合金涂层的研究进展[J]. 材料工程, 2019, 47(10): 33-43.
|
|
ZHAO H C, LIANG X B, QIAO Y L, et al. Research progress in high-entropy alloy coatings by laser cladding[J]. Journal of Materials Engineering, 2019, 47(10): 33-43. (in Chinese)
|
| [66] |
王志明, 郭建永, 王卓, 等. 激光熔覆涂层摩擦磨损性能的研究进展[J]. 材料保护, 2019, 52(10): 127-133.
|
|
WANG Z M, GUO J Y, WANG Z, et al. Research progress on friction and wear resistance of laser cladding coatings[J]. Mater Protec, 2019, 52(10): 127-133. (in Chinese)
|
| [67] |
MEN X D, TAO F H, GAN L, et al. Erosion behavior of Ni-based coating under high-speed hot airflow[J]. Surface Engineering, 2019, 35(8): 710-718.
doi: 10.1080/02670844.2019.1573343
|
| [68] |
SIDHU T S, AGRAWAL R D, PRAKASH S, et al. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings: a review[J]. Surface & Coatings Technology, 2005, 198(1): 441-446.
doi: 10.1016/j.surfcoat.2004.10.056
URL
|
| [69] |
蒋啸林. 电爆炸喷涂技术提高火炮身管寿命的机理研究[D]. 北京: 机械科学研究总院, 2012.
|
|
JIANG X L. Research on the mechanism of improving cannon gun barrel life by electrical explosion spraying technology[D]. Beijing: China Academy of Machinery Science and Technology Group, 2012. (in Chinese)
|
| [70] |
赵桥桥, 刘景, 陈宝林, 等. 低温等离子体技术在金属防护中的应用[J]. 材料保护, 2019, 52(5): 116-120, 124.
|
|
ZHAO Q Q, LIU J, CHEN B L, et al. Application of low temperature plasma technology for the protection of metals[J]. Mater Protec, 2019, 52(5): 116-120, 124. (in Chinese)
|
| [71] |
UNABIA R, CANDIDATO R, PAWŁOWSKI L. Current progress in solution precursor plasma spraying of cermets: a review[J]. Metals, 2018, 8(6): 420.
doi: 10.3390/met8060420
URL
|
| [72] |
姚世睿, 陈永才. 火炮身管内膛涂层制备技术的研究进展[J]. 热加工工艺, 2018, 47(6): 41-44, 48.
|
|
YAO S R, CHEN Y C. Research progress of preparation technology of inner coating of artillery gun barrel[J]. Hot Working Technology, 2018, 47(6): 41-44, 48. (in Chinese)
|
| [73] |
VIGILANTE G, SAGE T, KENDALL G, et al. Characterization of tantalum liners applied to 25 mm and 120 mm cannon bore sections via explosive bonding[R]. NJ, US: Benet Weapons Laboratories, 2002.
|
| [74] |
BARNETT B, TREXLER M, CHAMPAGNE V. Cold sprayed refractory metals for chrome reduction in gun barrel liners[J]. International Journal of Refractory Metals and Hard Materials, 2015, 53: 139-143.
doi: 10.1016/j.ijrmhm.2015.07.007
URL
|
| [75] |
RYBIN D K, BATRAEV I S, DUDINA D V, et al. Deposition of tungsten coatings by detonation spraying[J]. Surface and Coatings Technology, 2021, 409: 126943.
doi: 10.1016/j.surfcoat.2021.126943
URL
|
| [76] |
JIANG X L, WANG Y N, LU X. Research on the mechanism of extending artillery barrel life by electrical explosion spraying technology[J]. Advanced Materials Research, 2012, 429: 19-24.
doi: 10.4028/www.scientific.net/AMR.429
URL
|
| [77] |
WANG Y N, JIANG X L, YANG P. Finite element analysis of electrical explosion spraying technology[J]. Advanced Materials Research, 2012, 429: 72-77.
doi: 10.4028/www.scientific.net/AMR.429
URL
|
| [78] |
MAJID A, BIBI M. Cadmium based II-VI semiconducting nanomaterials[M]. Cham, Germany:Springer, 2018: 128-142.
|
| [79] |
ALOTAIBI A M, SATHASIVAM S, WILLIAMSON B A D, et al. Chemical vapor deposition of photocatalytically active pure brookite TiO2 thin films[J]. Chemistry of Materials, 2018, 30(4): 1353-1361.
doi: 10.1021/acs.chemmater.7b04944
URL
|
| [80] |
杨莎莎, 杨峰, 陈明辉, 等. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
|
|
YANG S S, YANG F, CHEN M H, et al. Effect of nitrogen doping on microstructure and wear resistance of tantalum coatings deposited by direct current magnetron sputtering[J]. Acta Metallurgica Sinica, 2019, 55(3): 308-316. (in Chinese)
|
| [81] |
VAGIN A V, ALBAGACHIEV A Y, SIDOROV M I, et al. Improving the life of artillery systems[J]. Russian Engineering Research, 2017, 37(3): 211-217.
doi: 10.3103/S1068798X17030212
URL
|
| [82] |
SHAAT M. Effects of processing force on performance of nano-resonators produced by magnetron sputtering deposition[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 104: 42-48.
doi: 10.1016/j.physe.2018.07.019
URL
|
| [83] |
TURLEY D M. Development of erosion resistant refractory metal and alloy coatings by magnetron sputtering[J]. Surface and Coatings Technology, 1989, 39: 135-142.
|
| [84] |
VIGILANTE G N, MULLIGAN C P. Cylindrical magnetron sputtering (CMS) of coatings for wear life extension in large caliber cannons[J]. Materials and Manufacturing Processes, 2006, 21(6): 621-627.
doi: 10.1080/10426910600609429
URL
|
| [85] |
MULLIGAN C P, SMITH S B, VIGILANTE G N. Characterization and comparison of magnetron sputtered and electroplated gun bore coatings[J]. Journal of Pressure Vessel Technology, 2006, 128(2):240-245.
doi: 10.1115/1.2172963
URL
|
| [86] |
JIN H, LI D Y, SUN H J, et al. Corrosion resistance of CrAlVN coatings deposited on PCrNi3Mo steel surfaces with reactive magnetron sputtering[J]. Materiali in Tehnologije, 2018, 52(5): 591-597.
doi: 10.17222/mit
URL
|
| [87] |
金浩, 张莹莹, 时卓, 等. 磁控溅射技术制备CrAlN涂层的研究进展[J]. 材料导报, 2016, 30(3): 54-59.
|
|
JIN H, ZHANG Y Y, SHI Z, et al. Recent development on magnetron sputtering of CrAlN coating[J]. Materials Reports, 2016, 30(3): 54-59. (in Chinese)
|
| [88] |
SUH Y, CHEN W, MAENG S, et al. Synthesis and characterization of plasma assisted chemically vapor deposited tantalum[J]. Thin Solid Films, 2010, 518(19): 5452-5456.
doi: 10.1016/j.tsf.2010.04.014
URL
|
| [89] |
张健, 韩继龙, 郭策安, 等. 添加Y对炮钢表面电弧离子镀(Ti, Al)N薄膜氧化性能的影响[J]. 功能材料, 2015, 46(13): 13144-13147.
|
|
ZHANG J, HAN J L, GUO C A, et al. Influence of Y addition for oxidation performance of arc ion plated (Ti, Al) N films on gun steel[J]. Journal of Functional Materials, 2015, 46(13): 13144-13147. (in Chinese)
|
| [90] |
BANDYOPADHYAY P S, GHOSH S K, KUNDU S, et al. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel[J]. Materials Chemistry and Physics, 2013, 138(1): 86-94.
doi: 10.1016/j.matchemphys.2012.10.040
URL
|
| [91] |
CHATTERJEE S, GHOSH S K. Evolution of phases and mechanical properties of thermomechanically processed ultra high strength steels[J]. Transactions of the Indian Institute of Metals, 2013, 66(5/6): 611-619.
doi: 10.1007/s12666-013-0293-3
URL
|
| [92] |
罗天放, 陈荣刚, 吴斌. 炮钢材料等离子淬火后的组织与性能[J]. 金属热处理, 2019, 44(2): 77-82.
|
|
LUO T F, CHEN R G, WU B. Microstructure and properties of gun steel after plasma quenching[J]. Heat Treat Met-UK, 2019, 44(2): 77-82. (in Chinese)
|
| [93] |
罗天放, 陈荣刚, 吴斌. 等离子淬火对PCrNi3Mo钢拉伸性能的影响[J]. 材料热处理学报, 2018, 39(12): 64-70.
doi: 10.13289/j.issn.1009-6264.2018-0328
|
|
LUO T F, CHEN R G, WU B. Effect of plasma quenching on tensile properties of PCrNi3Mo steel[J]. Transactions Mater Heat Treat, 2018, 39(12): 64-70. (in Chinese)
|
| [94] |
LUO T F. A Method of Plasma quenching in the gun barrel[J]. Journal of Physics: Conference Series, 2021, 1748(5): 052008.
doi: 10.1088/1742-6596/1748/5/052008
|
| [95] |
刘峻, 张国祥. 激光淬火基体对铬层生长影响的电镀机理研究[J]. 铸造技术, 2016, 37(3): 459-461.
|
|
LIU J, ZHANG G X. Study on plating mechanism of laser quenching substrate on Cr coating growth[J]. Foundry Technology, 2016, 37(3): 459-461. (in Chinese)
|
| [96] |
张国祥, 程宏辉. 激光离散预处理镀铬身管的基体烧蚀行为研究[J]. 激光技术, 2013, 37(2): 165-168.
|
|
ZHANG G X, CHENG H H. Study on the substrate ablation behaviour of Cr-plated barrel treated by laser discrete pre-quenching[J]. Laser Technology, 2013, 37(2): 165-168. (in Chinese)
|
| [97] |
TRIPATHI P, RAMKUMAR J, BALANI K. Laser peening enhances tribological resistance of electrodeposited Cr coatings reinforced with yttria stabilized zirconia and carbon nano tubes[J]. Surface and Coatings Technology, 2019, 378: 124919.
doi: 10.1016/j.surfcoat.2019.124919
URL
|
| [98] |
刘帮俊, 陈荣刚, 吴斌. 火炮身管失效机理和寿命预测[J]. 兵器装备工程学报, 2016, 37(12): 121-125, 149.
|
|
LIU B J, CHEN R G, WU B. Failure mechanism and life prediction of gun barrel[J]. Journal of Ordnance Equipment Engineering, 2016, 37(12): 121-125, 149. (in Chinese)
|
| [99] |
SCHUPFER M, STEINHOFF K, RÖTHLISBERGER R. New materials for large-caliber rotating bands for high charges[C]// Proceedings of the 19th International Symposium of Ballistics. US: DEStech Publications, 2001: 379-385.
|
| [100] |
WU B, ZHENG J, QIU J, et al. Preparation of the projectile rotating band and its performance evaluation[J]. Journal of Adhesion Science & Technology, 2016, 30(11): 1143-1164.
|
| [101] |
卢凤生, 张雷, 王波, 等. 大口径弹带材料黄铜的磨损机理研究[J]. 沈阳理工大学学报, 2019, 38(5): 51-55.
|
|
LU F S, ZHANG L, WANG B, et al. Friction and wear performance of bronze for large-caliber rotating band material[J]. Journal of Shenyang Ligong University, 2019, 38(5): 51-55. (in Chinese)
|
| [102] |
李国昌. 增韧耐磨尼龙弹带材料的研制[J]. 工程塑料应用, 2015(9): 40-43.
|
|
LI G C. Development of toughened and wear-resistant nylon 66 blet[J]. Engineering Plastics Application, 2015(9): 40-43. (in Chinese)
|
| [103] |
KRUMM H. Gun barrel equipped with optimized rifling: US, 5, 077, 926[P]. 1992-01-07.
|
| [104] |
石立雄. 枪管寿命技术研究[D]. 南京: 南京理工大学, 2016.
|
|
SHI L X. Research on the technology of gun barrel life[D]. Nanjing: Nanjing University of Science and Technology, 2016. (in Chinese)
|
| [105] |
薛百文, 常德顺, 贾玉峰. 锯齿形膛线在火炮上的应用[J]. 机械工程与自动化, 2011, 40(4): 184-185, 191.
|
|
XUE B W, CHANG D S, JIA Y F. Application of zigzag rifle in artillery[J]. Mechanical Engineering & Automation, 2011, 40(4): 184-185, 191. (in Chinese)
|
| [106] |
王俊, 黄进峰, 吴护林, 等. 速射武器身管用钢存在的问题及研究进展[J]. 材料导报, 2007, 21(5): 90-93.
|
|
WANG J, HUANG J F, WU H L, et al. Research progress and problems of rapid-firing gun steels[J]. Materials Reports, 2007, 21(5): 90-93. (in Chinese)
|
| [107] |
LIU Y, WANG M, LIU G. Effect of hydrogen on ductility of high strength 3Ni-Cr-Mo-V steels[J]. Materials Science and Engineering: A, 2014, 594: 40-47.
doi: 10.1016/j.msea.2013.11.058
URL
|
| [108] |
KATZ R N, BRACAMONTE L A, WITHERS J C, et al. Hybrid ceramic matrix/metal matrix composite gun barrels[J]. Materials and Manufacturing Processes, 2006, 21(6): 579-583.
|
| [109] |
WITHERS J C, STORM R, SHAPOVALOV V, et al. An all titanium gun barrel containing a TiCN liner[J]. Materials and Manufacturing Processes, 2012, 27(8): 878-881.
doi: 10.1080/10426914.2011.648698
URL
|
| [110] |
ROSSET W S, MONTGOMERY J S. Cobalt-base alloy gun barrel study[J]. Wear, 2014, 316(1/2): 119-123.
doi: 10.1016/j.wear.2014.05.001
URL
|
| [111] |
刘畅, 杨国来, 范雪坤, 等. 复合材料身管的动态冲击响应分析[J]. 弹道学报, 2020, 32(4): 76-82, 96.
|
|
LIU C, YANG G L, FAN X K, et al. Study on dynamic impact response of composite overwrapped gun tube[J]. Journal of Ballistics, 2020, 32(4): 76-82, 96. (in Chinese)
|
| [112] |
谭继宇, 张效天, 张魏友, 等. 基于复合材料纤维缠绕增强技术的身管减重设计[J]. 兵器装备工程学报, 2021, 42(1): 50-54.
|
|
TAN J Y, ZHANG X T, ZHANG W Y, et al. Barrel lightweight design based on filament winding strengthening technology of composite[J]. Journal of Ordnance Equipment Engineering, 2021, 42(1): 50-54. (in Chinese)
|
| [113] |
郭俊行, 樵军谋, 马帅, 等. 轻型无坐力炮复合身管强度设计方法研究[J]. 火炮发射与控制学报, 2021, 42(4): 58-62.
|
|
GUO J X, QIAO J M, MA S, et al. Strength design method for composite barrel of light weight recoilless gun[J]. Journal of Gun Launch & Control, 2021, 42(4): 58-62. (in Chinese)
|
| [114] |
TROIANO E, PARKER A P, UNDERWOOD J H. Mechanisms and modeling comparing HB7 and A723 high strength pressure vessel steels[J]. Journal of Pressure Vessel Technology, 2004, 126(11): 473-477.
doi: 10.1115/1.1811108
URL
|
| [115] |
WANG F, BALETA J, WANG Q, et al. Investigation on the effect of electrode tip on formation of metal droplets and temperature profile in a vibrating electrode electroslag remelting process[J]. Open Physics, 2019, 17(1): 743-751.
doi: 10.1515/phys-2019-0078
URL
|
| [116] |
胡士廉, 吕彦, 胡俊, 等. 高强韧厚壁炮钢材料的发展[J]. 兵器材料科学与工程, 2018, 41(6): 108-112.
|
|
HU S L, LÜ Y, HU J, et al. Progress in high strength and toughness of steel material for thick-wall cannon[J]. Ordnance Material Science and Engineering, 2018, 41(6): 108-112. (in Chinese)
|
| [117] |
TROIANO E, PARKER A P, UNDERWOOD J H. Mechanisms and modeling comparing HB7 and A723 high strength pressure vessel steels[J]. Journal of Pressure Vessel Technol, 2004, 126(4): 473-477.
doi: 10.1115/1.1811108
URL
|
| [118] |
胡俊, 吕彦, 黄建文, 等. 高强韧Cr-Ni-Mo-V钢的冶炼工艺研究[J]. 热加工工艺, 2020, 49(23): 64-66.
|
|
HU J, LÜ Y, HUANG J W, et al. Research on melting process of high strength and high toughness Cr-Ni-Mo-V steel[J]. Hot Working Technology, 2020, 49(23): 64-66. (in Chinese)
|
| [119] |
胡士廉, 吕彦, 黄建文, 等. 新型高强韧Cr-Ni-Mo-V钢的显微组织结构与强韧化机理[J]. 兵器材料科学与工程, 2018, 41(6): 92-95.
|
|
HU S L, LÜ Y, HUANG J W, et al. Microstructure and strengthening-toughening mechanism of new high strength and toughness Cr-Ni-Mo-V steel[J]. Ordnance Material Science and Engineering, 2018, 41(6): 92-95. (in Chinese)
|
| [120] |
李程, 毛保全, 白向华, 等. 磁约束下等离子体在火炮身管中的隔热特性研究[J]. 火炮发射与控制学报, 2018, 39(3): 6-10.
|
|
LI C, MAO B Q, BAI X H, et al. Study of thermal insulation characteristics of plasma in the gun barrel under magnetic confinement[J]. Journal of Gun Launch & Control, 2018, 39(3): 6-10. (in Chinese)
|
| [121] |
李程. 磁约束等离子体在圆筒结构中的流动和传热特性研究[D]. 北京: 陆军装甲兵学院, 2019.
|
|
LI C. Study on flow and heat transfer characteristics of magnetically confined plasma in cylindrical structure[D]. Beijing: Army Academy of Armored Forces, 2019. (in Chinese)
|
| [122] |
毛保全, 陈春林, 白向华, 等. 电离种子对发射药电离特性影响研究[J]. 火工品, 2021, 43(4): 42-44.
|
|
MAO B Q, CHEN C L, BAI X H, et al. Research on the effect of ionized seeds on the ionization characteristics of propellant[J]. Initiators & Pyrotechnics, 2021, 43(4): 42-44. (in Chinese)
|
| [123] |
LIN L, WENG C, CHEN Q Z, et al. Study on the effects of ionization seeds on pulse detonation characteristics[J]. Aerospace Science and Technology, 2017, 71: 128-135.
doi: 10.1016/j.ast.2017.09.015
URL
|
| [124] |
毛保全, 李程, 白向华, 等. 含钾盐添加剂的火药燃烧产物导电特性研究[J]. 兵工学报, 2018, 39(2): 296-304.
doi: 10.3969/j.issn.1000-1093.2018.02.012
|
|
MAO B Q, LI C, BAI X H, et al. Research on the electrical properties of propellant combustion products containing potassium salt[J]. Acta Armamentarii, 2018, 39(2): 296-304. (in Chinese)
|
| [125] |
李俊, 毛保全, 白向华, 等. 高温高压下CsNO3电离产生等离子体规律试验研究[J]. 装甲兵工程学院学报, 2018, 32(3): 61-64.
|
|
LI J, MAO B Q, BAI X H, et al. Experimental research on law of plasma generated by ionization of CsNO3 under high temperature and high pressure[J]. Journal of Academy of Armored Force Engineering, 2018, 32(3): 61-64. (in Chinese)
|
| [126] |
李俊, 毛保全, 白向华, 等. 火药燃气作用下电离种子产生等离子体研究[J]. 核聚变与等离子体物理, 2019, 39(1): 83-88.
doi: 10.16568/j.0254-6086.201901013
|
|
LI J, MAO B Q, BAI X H, et al. Research on plasma formation of ionized seeds under the influence of gunpowder gas[J]. Nuclear Fusion and Plasma Physics, 2019, 39(1): 83-88. (in Chinese)
doi: 10.16568/j.0254-6086.201901013
|
| [127] |
钟孟春, 李晓刚, 毛保全, 等. 火药燃烧等离子体电导率影响因素研究[J]. 装甲兵工程学院学报, 2017, 31(4): 61-64, 124.
|
|
ZHONG M C, LI X G, MAO B Q, et al. Research on the influencing factors of plasma conductivity in propellant combustion[J]. Journal of Academy of Armored Force Engineering, 2017, 31(4): 61-64, 124. (in Chinese)
|
| [128] |
毛保全, 兰图, 邓威, 等. 基于电离种子的发射药燃烧生成等离子体研究[J]. 火工品, 2017, 39(2): 33-37.
|
|
MAO B Q, LAN T, DENG W, et al. Study on plasma produced by propellant combustion based on ionized seed[J]. Initiators & Pyrotechnics, 2017, 39(2): 33-37. (in Chinese)
|
| [129] |
宋鹏, 毛保全, 钟孟春, 等. 火药燃烧生成等离子体规律数值仿真研究[J]. 火工品, 2017, 39(1): 42-45.
|
|
SONG P, MAO B Q, ZHONG M C, et al. Numerical simulation study on the law of plasma generated by propellant combustion[J]. Initiators & Pyrotechnics, 2017, 39(1): 42-45. (in Chinese)
|
| [130] |
宋鹏, 钟孟春, 毛保全. 基于密闭爆发器的等离子体诊断系统研究[J]. 火工品, 2016, 38(4): 54-57.
|
|
SONG P, ZHONG M C, MAO B Q. The study of plasma diagnosis system based on closed bomb[J]. Initiators & Pyrotechnics, 2016, 38(4): 54-57. (in Chinese)
|
| [131] |
李晓刚, 毛保全, 钟孟春, 等. 火药燃烧等离子体电导率理论计算研究[J]. 火工品, 2017, 39(4): 53-56.
|
|
LI X G, MAO B Q, ZHONG M C, et al. Theoretical calculation research of electrical conductivity of plasma[J]. Initiators & Pyrotechnics, 2017, 39(4): 53-56. (in Chinese)
|
| [132] |
李程, 毛保全, 白向华, 等. 磁场方向对圆筒结构内高温导电气体流动与传热特性的影响研究[J]. 兵工学报, 2018, 39(5): 851-858.
doi: 10.3969/j.issn.1000-1093.2018.05.003
|
|
LI C, MAO B Q, BAI X H, et al. Effect of magnetic field direction on the flow and heat transfer characteristics of high temperature conductive gas in cylinder structure[J]. Acta Armamentarii, 2018, 39(5): 851-858. (in Chinese)
|
| [133] |
LI C, MAO B Q, BAI X H. Effect of vertical magnetic field on the flow and heat transfer characteristics of conducting gas in a cylinder[J]. International Journal of Performability Engineering. 2018, 14(12): 3118-3128.
|
| [134] |
ZHAO Q J, MAO B Q, BAI X H, et al. Heat transfer suppression mechanism of magnetogasdynamic flow in a circular tube subjected to transverse magnetic field regulation[J]. International Communications in Heat and Mass Transfer, 2022, 134: 105990.
doi: 10.1016/j.icheatmasstransfer.2022.105990
URL
|
| [135] |
ZHAO Q J, BAI X H, MAO B Q, et al. Flow and heat transfer characteristics of conductive gases in circular tubes under applied magnetic fields with different orientations[J]. Physics of Fluids, 2022, 34(3): 035112.
doi: 10.1063/5.0085009
URL
|
| [136] |
ZHANG L, CHEN Z, WEN D, et al. Estimation of the time-varying high-intensity heat flux for a two-layer hollow cylinder[J]. Energies, 2018, 11(12): 3332.
doi: 10.3390/en11123332
URL
|