| [1]  WANG  H X, ZONG W J, SUN T, et al. Modification of three dimensional topography of the machined KDP crystal surface using wavelet analysis method[J]. Applied Surface Science, 2010, 256(16): 5061-5068.
 [2]  AIT-SADI  H, HEMMOUCHE L, HATTALI L, et al. Effect of nanosilica additive particles on both friction and wear performance of mild steel/CuSn/SnBi multimaterial system[J]. Tribology International, 2015,90:372-385.
 [3]  梁鑫光, 姚振强. 基于动力学响应的球头刀五轴铣削表面形貌仿真[J]. 机械工程学报, 2013, 6(6):171-178.
 LIANG X G, YAO Z Q. Dynamic-based simulation for machined surface topography in 5-axis ball-end milling[J]. Journal of Mechanical Engineering, 2013, 6(6): 171-178. (in Chinese)
 [4]  ALTINTAS Y, ENGIN S. Generalized modeling of mechanics and dynamics of milling cutters[J]. CIRP Annals-Manufacturing Technology, 2001, 50(1):25-30.
 [5]  阎兵, 张大卫. 球头铣刀铣削表面形貌建模与仿真[J]. 计算机辅助设计与图形学学报, 2001,13(2):135-140.
 YAN B, ZHANG D W. Modeling and Simulation of ball end milling surface topology[J]. Journal of Computer Aided Design and Graphics, 2001,13(2): 135-140. (in Chinese)
 [6]  QUINSAT Y, SABOURIN L, LARTIGUE C. Surface topography in ball end milling process: description of a 3D surface roughness parameter[J]. Journal of Materials Processing Technology, 2008, 195(1/2/3):135-143.
 [7]  QUINSAT Y, LAVERNHE S, LARTIGUE C. Characterization of 3D surface topography in 5-axis milling[J]. Wear, 2011,271(3/4):590-595.
 [8]  LIU X, SOSHI M, SAHASRABUDHE A, et al. A geometrical simulation system of ball end finish milling process and its application for the prediction of surface micro features[J]. Journal of Manufacturing Science and Engineering, 2006,128(1):74.
 [9]  范思敏, 肖继明, 董永亨, 等. 球头铣刀铣削球面的表面形貌建模与仿真研究[J]. 中国机械工程, 2020, 31(24): 2924-2930, 2936.
 FAN S M, XIAO J M, DONG Y H, et al. Study on modeling and simulation of surface topography of spherical milling with ball-end milling cutters[J]. China Mechanicl Engneering, 2020, 31(24): 2924-2930, 2936. (in Chinese)
 [10]  赵厚伟, 张松, 赵斌, 等. 球头铣刀加工表面形貌仿真预测[J]. 计算机集成制造系统, 2014, 20(4):880-889.
 ZHAO H W, ZHANG S, ZHAO B, et al. Simulation and prediction of surface topography machined by ball-nose end mill[J]. Computer Integrated Manufacturing System, 2014, 20(4): 880-889. (in Chinese)
 [11]  赵厚伟, 张松, 王高琦, 等. 球头铣刀加工倾角对表面形貌的影响[J]. 计算机集成制造系统, 2013, 19(10):2438-2444.
 ZHAO H W, ZHANG S, WANG G Q, et al. Effect of machining inclination angle of ball-nose end mill on surface topography[J]. Computer Integrated Manufacturing System, 2013, 19(10): 2438-2444. (in Chinese)
 [12]  王仁伟, 张松, 葛人杰, 等. 改进的球头铣刀加工表面形貌建模方法[J]. 计算机集成制造系统, 2021, 27(4): 973-980.
 WANG R W, ZHANG S, GE R J, et al. Modified machined surface topography modeling in ball-end milling process[J]. Computer Integrated Manufacturing System, 2021, 27(4): 973-980.  (in Chinese)
 [13]  ANTONIADIS  A, SAVAKIS C, BILALIS N, et al. Prediction of surface topomorphy and roughness in ball-end milling[J]. International Journal of Advanced Manufacturing Technology, 2003, 21(12):965-971.
 [14]  GAO T, ZHANG W H, QIU K P, et al. Numerical simulation of machined surface topography and roughness in milling process[J]. Journal of Manufacturing Science and Engineering, 2006, 128(1):96.
 [15]  谭刚, 张卫红, 万敏, 等. 球头刀多轴铣削表面形貌建模仿真研究[J]. 昆明理工大学学报(理工版), 2007, 32(3):23-29.
 TAN G,ZHANG W H, WAN M, et al. Modeling and smiulation study on multi-axis milled surface topography with round head cutter[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2007, 32(3):23-29. (in Chinese)
 [16]  ZHANG W-H, TAN G, WAN M, et al. A new algorithm for the numerical simulation of machined surface topography in multiaxis ball-end milling[J]. Journal of Manufacturing Science and Engineering, 2008, 130(1):011003.
 [17]  CHEN J S, HUANG Y K, CHEN M S. A study of the surface scallop generating mechanism in the ball-end milling process[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9):1077-1084.
 [18]  MIZUGAKI  Y, HAO M, KIKKAWA K, et al. Geometric generating mechanism of machined surface by ball-nosed end milling[J]. CIRP Annals-Manufacturing Technology, 2001, 50(1): 69-72.
 [19]  ARIZMENDI M, FERNNDEZ J, LACALLE L N L D, et al. Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset. experimental validation[J]. CIRP Annals-Manufacturing Technology, 2008, 57(1):101-104.
 [20]  董永亨, 李淑娟, 李言, 等. 基于改进Z-MAP算法的球头铣刀加工表面形貌仿真与试验研究[J]. 机械工程学报, 2017, 53(23):197-208.
 DONG Y H, LI S J, LI Y, et al. Simulation and experimental study of ball-end milling surface topography based on an improved Z-MAP algorithm[J]. Chinese Journal of Mechanical Engineering, 2017, 53(23):197-208. (in Chinese)
 [21]  董永亨, 李淑娟, 李言, 等. 球头铣刀余摆线加工表面形貌的建模与仿真研究[J]. 机械工程学报, 2018, 54(19):212-223.
 DONG Y H, LI S J, LI Y, et al. Research on modeling and simulation of surface topography obtained by trochoidal milling mode with ball end milling cutter[J]. Chinese Journal of Mechanical Engineering, 2018, 54(19):212-223.(in Chinese)
 [22]  TOH  C K. Surface topography analysis in high speed finish milling inclined hardened steel[J]. Precision Engineering, 2004, 28(4):386-398.
 [23]  CHIANG S T, TSAI C M, LEE A C. Analysis of cutting forces in ball-end milling[J]. Journal of Materials Processing Technology, 1995, 47(3/4):231-249.
 [24]  BUDAK E, ALTINTAS?瘙塁 Y, ARMAREGO E J A. Prediction of milling force coefficients from orthogonal cutting data[J]. Journal of Manufacturing Science and Engineering, 1996, 118(2):216-224.
 [25]  ALTINTAS Y, WECK M. Chatter stability of metal cutting and grinding[J]. CIRP Annals-Manufacturing Technology, 2004, 53(2): 619-642.
 [26]  MONTGOMERY D, ALTINTAS Y. Mechanism of cutting force and surface generation in dynamic milling[J]. Journal of Manufacturing Science and Engineering, 1991, 113(2):160-168.
 [27]  DING Y, ZHU L M, ZHANG X J, et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools & Manufacture, 2010, 50(5):502-509.
 
 
 
 
 |