MU Siqi, LIN Jinjian, WANG Haiquan, WEI Xiongzhi. An Algorithm for Detection of Prohibited Items in X-ray Images Based on Improved YOLOv4[J]. Acta Armamentarii, 2021, 42(12): 2675-2683.
[1] 徐茂书.注意力机制下X光安检违禁品图像区域分割[D].天津:中国民航大学,2019. XU M S.Prohibited item X-ray image segmentation via attention mechanism[D].Tianjin:Civil Aviation University of China,2019.(in Chinese) [2] DUMAGPI J K,JUNG W Y,JEONG Y J. A new GAN-based anomaly detection (GBAD) approach for multi-threat object classification on large-scale X-ray security images[J]. IEICE Transactions on Information and Systems,2020,E103.D(2):454-458. [3] 赵子豪.基于GAN的安检X光物品图像生成方法研究[D]. 天津:中国民航大学,2019. ZHAO Z H. Research on security X-ray item image generation based on GAN[D]. Tianjin:Civil Aviation University of China,2019.(in Chinese) [4] LIN T Y,MAIRE M,BELONGIE S,et al. Microsoft COCO: common objects in context[C]∥Proceedings of European Conference on Computer Vision.Zurich,Switzerland: Springer,2014:740-755. [5] WU X,SAHOO D,HOI SC H.Recent advances in deep learning for object detection[J].Neurocomputing,2020,396:39-64. [6] JIAO L,ZHANG F,LIU F,et al. A survey of deep learning-based object detection[J].IEEE Access,2019,7:128837-128868. [7] WEI Y L,TAO R S,WU Z J,et al. Occluded prohibited items detection: an X-ray security inspection benchmark and de-occlusion attention module[C]∥Proceedings of the 28th ACM International Conference on Multimedia. Seattle,WA,US:ACM,2020:138-146. [8] 张友康,苏志刚,张海刚,等.X光安检图像多尺度违禁品检测[J].信号处理,2020,36(7):1096-1106. ZHANG Y K,SU Z G,ZHANG H G,et al. Multi-scale prohibited item detection in X-ray security image[J].Journal of Signal Processing,2020,36(7): 1096-1106.(in Chinese) [9] 郭守向,张良.Yolo-C:基于单阶段网络的X光图像违禁品检测[J].激光与光电子学进展,2021,58(8):0810003. GUO S X,ZHANG L.Yolo-C: one-stage network for prohibited items detection within X-ray images[J]. Laser & Optoelectronics Progress, 2021,58(8):0810003. (in Chinese)
[10] BOCHKOVSKIY A,WANG C Y,LIAO H.YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2020-09-16]. https:∥arxiv.org/abs/ 2004.10934. [11] 原培新,张晓慧.数字图像处理在汽车轮胎 X 射线检测中的应用[J].CT理论与应用研究,2007,16(2):48-51. YUAN P X,ZHANG X H. X-ray detection of tyre with digital image processing[J]. Computerized Tomography Theory and Applications,2007,16(2):48-51.(in Chinese) [12] 顾乐旭.基于X射线安检图像的刀具识别系统设计[D].吉林:东北电力大学,2018. GU L X. Design of cutlery recognition system based on X-ray safety inspection image[D].Jilin:Northeast Electric Power University,2018.(in Chinese) [13] NERCESSIAN S,PANETTA K,AGAIAN S. Automatic detection of potential threat objects in X-ray luggage scan images[C]∥Proceedings of IEEE Conference on Technologies for Homeland Security.Waltham,MA,US: IEEE,2008: 504-509. [14] 韩宁.基于深度学习的X射线图像危险品检测与跟踪算法研究[D].兰州:兰州大学,2018. HAN N.A deep learning-based dangerous goods detection and tracking algorithm from X-ray images[D]. Lanzhou:Lanzhou University,2018.(in Chinese) [15] LIU L J,LENG X,LIU Y. Deep convolutional neural network based object detector for X-ray baggage security imagery[C]∥Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence. Portland, OR,US:IEEE,2019:1757-1761. [16] AKCAY S,KUNDEGORSKI M E,WILLCOCKS C G,et al. Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery[J]. IEEE Transactions on Information Forensics and Security,2018,13(9):2203-2215. [17] WANG P Q,CHEN P F,YUAN Y,et al.Understanding convolution for semantic segmentation[C]∥Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe,NV,US: IEEE,2018:1451-1460. [18] WANG Q L,WU B G,ZHU P F,et al.ECA-Net: efficient channel attention for deep convolutional neural networks[C]∥Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,WA,US: IEEE,2020:11531-11539. [19] LI X,WANG W H,HU X L,et al.Selective kernel networks[C]∥ Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA,US:IEEE,2019:510- 519. [20] ZHANG Z,WANG P,LIU W,et al. Distance-IoU loss: faster and better learning for bounding box regression [EB/OL]. (2019-11-19) [2020-02-28]. https:∥arxiv.org/abs/1911.08287?context=cs.CV. [21] MIAO C J,XIE L X,WAN F,et al.SIXray: a large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images[C]∥Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,CA,US:IEEE,2019:2114-2123. [22] LIU W, ANGUELOV D,ERHAN D,et al.SSD: single shot MultiBox detector[EB/OL].(2015-12-08) [2019-10-12]. https:∥arxiv.org/abs/1512.02325. [23] REDMON J,FARHADI A.YOLOv3: an incremental improvement [EB/OL].(2018-04-08)[2020-01-12]. https:∥arxiv.org/abs/1804.02767.