Acta Armamentarii ›› 2021, Vol. 42 ›› Issue (8): 1789-1802.doi: 10.3969/j.issn.1000-1093.2021.08.024
• Comprehensive Review • Previous Articles Next Articles
GAO Feng, ZHANG Ze
Online:
2021-09-15
CLC Number:
GAO Feng, ZHANG Ze. Review on Performance Evaluation of Solid Rocket Motors with Charge Defects[J]. Acta Armamentarii, 2021, 42(8): 1789-1802.
[1] 邢耀国, 杨欣毅, 董可海, 等. 固体火箭发动机装药缺陷失效判定研究的发展和展望[J]. 固体火箭技术, 2004, 27(2): 126-129. XING Y G, YANG X Y, DONG K H, et al. Progress and prospect of the research on failure criterion for propellent grains with defects in SRM[J]. Journal of Solid Rocket Technology, 2004, 27(2): 126-129. (in Chinese) [2] 王自强, 陈少华. 高等断裂力学[M]. 北京: 科学出版社, 2009. WANG Z Q, CHEN S H. Advanced fracture mechanics[M]. Beijing: Science Press, 2009. (in Chinese) [3] SCHAPERY R A. Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media[J]. International Journal of Fracture, 1984, 25(3): 195- 223. [4] KNAUSS W G. The mechanics of polymer fracture[J]. Applied Mechanics Reviews, 1973, 26(1): 1-17. [5] FRAISSE P, SCHMIT F. Use of J-integral as fracture parameter in simplified analysis of bonded joints[J]. International Journal of Fracture, 1993, 63: 59-73. [6] 王阳, 李高春, 伍鹏, 等. 基于数字图像相关方法的端羟基聚丁二烯推进剂复合型裂纹J积分测量[J]. 兵工学报, 2019, 40(2): 284-291. WANG Y, LI G C, WU P, et al. J-integral measurement of mixed mode cracks of HTPB propellant based on digital image correlation method[J]. Acta Armamentarii, 2019, 40(2): 284-291. (in Chinese) [7] 王阳, 李高春, 张璇, 等. 基于SEM与数字图像相关方法的HTPB推进剂裂尖扩展过程分析[J].火炸药学报, 2019, 42(1): 73-78. WANG Y, LI G C, ZHANG X, et al. Analysis of crack tip propagation process of HTPB propellant based on SEM and digital image correlation method[J]. Chinese Journal of Explosives & Propellants, 2019, 42(1): 73-78. (in Chinese) [8] 刘甫. 粘弹性界面断裂与固体火箭发动机界面脱粘研究[D]. 长沙:国防科学技术大学, 2005. LIU F. Viscoelastic interface fracture and interface debond of solid rocket motor[D]. Changsha: National University of Defense Technology, 2005. (in Chinese) [9] WU S R. Combustion-induced crack/debond propagation in solid propellants[D]. State College, PA, US: The Pennsylvania State University, 1980. [10] LU Y C. Combustion-induced crack propagation process in a solid- propellant crack cavity[D]. State College, PA, US: The Pennsylvania State University, 1992. [11] LIU C T. Evaluation of damage fields near crack tips in a composite solid propellant[J]. Journal of Spacecraft & Rockets, 2015, 28(1): 64-70. [12] LIU C T, YANG J N. Probabilistic crack growth model for application to composite solid propellants[J]. Journal of Spacecraft & Rockets, 2015, 31(1): 79-84. [13] LIU C T. Crack growth behavior in a composite propellant with strain gradients. Ⅱ[J]. Journal of Spacecraft & Rockets, 2015, 27(6): 647-652. [14] LIU C T. Investigating the effects of specimen thickness and pressure on the crack growth behavior of a particulate composite material[J]. Transactions on Engineering Sciences, 2003, 40: 243- 351. [15] LIU C T, SMITH C W. Temperature and rate effects on stable crack growth in a particulate composite material[J]. Experimental Mechanics, 1996, 36(3): 290-295. [16] LIU C T. Crack growth behavior in a solid propellant[J]. Engineering Fracture Mechanics, 1997, 56(1): 127-135. [17] KNAUSS W G. Delayed failure—the Griffith problem for linearly viscoelastic materials[J]. International Journal of Fracture Mechanics, 1970, 6(1): 7-20. [18] 蒙上阳, 胡光宇, 刘兵, 等. 固体火箭发动机药柱裂纹的J积分分析[J]. 固体火箭技术, 2010, 33(6): 646-649. MENG S Y, HU G Y, LIU B, et al. Analysis of stability of crack in solid rocket motor grain with J-integral[J]. Journal of Solid Rocket Technology, 2010, 33(6): 646-649. (in Chinese) [19] 职世君, 孙冰, 张建伟. 固体推进剂复合型裂纹扩展数值计算[J]. 固体火箭技术, 2011, 34(1): 28-31,47. ZHI S J, SUN B, ZHANG J W. Numerical computation of mixed mode crack propagation in solid propellant[J]. Journal of Solid Rocket Technology, 2011, 34(1): 28-31,47. (in Chinese) [20] 陈凤明, 何国强, 马泽恩, 等. 燃烧固体药柱内腔表面的典型裂纹及其力学行为[J]. 推进技术, 1999, 20 (5): 21-24. CHEN F M, HE G Q, MA Z E, et al. Two types of cracks on cavity surface of high loaded solid propellant grain[J]. Journal of Propulsion Technology, 1999, 20(5): 21-24. (in Chinese) [21] 邢耀国, 熊华, 董可海. 聚硫推进剂燃烧条件下裂纹扩展过程研究[J]. 推进技术, 2000, 21(3): 71-74. XING Y G, XIONG H, DONG K H. Propagating process of cracks on polysulfide propellant during combustion[J]. Journal of Propulsion Technology, 2000, 21(3): 71-74. (in Chinese) [22] 熊华. 固体推进剂裂纹燃烧时扩展条件的实验研究与理论分析[D]. 烟台:海军航空工程学院, 1999. XIONG H. Experimental research and theoretical analysis of the crack propagation conditions of solid propellant[D]. Yantai: Naval Aeronautical and Astronautical University, 1999. (in Chinese) [23] 沈伟. 固体推进剂裂纹燃烧与扩展的研究[D]. 烟台:海军航空工程学院, 2000. SHEN W. Research on cack combustion and propagation of solid propellant[D]. Yantai: Naval Aeronautical and Astronautical University, 2000. (in Chinese) [24] WU S R, LU Y C, KUO K K, et al. Anomalous combustion of solid propellant in a propagating debond cavity[C]∥Proceedings of 30th Aerospace Sciences Meeting and Exhibit. Reno, NV, US: AIAA, 1992. [25] 邢耀国, 王立波, 董可海. 燃烧条件下影响推进剂脱粘面扩展的因素[J]. 推进技术, 2001, 22(1): 77-80. XING Y G, WANG L B, DONG K H. Factors influence propagation of debond in burning propellant[J]. Journal of Propulsion Technology, 2001, 22(1): 77-80. (in Chinese) [26] 庞爱民, 池旭辉, 尹华丽. NEPE推进剂/衬层界面研究进展[J]. 固体火箭技术, 2018, 41(2): 181-189, 202. PANG A M, CHI X H, YIN H L. Recent advances on research of adhesive interfaces between NEPE propellants and HTPB liner[J]. Journal of Solid Rocket Technology, 2018, 41(2): 181-189, 202. (in Chinese) [27] 周盼, 方成培, 王桂林, 等. 基于复杂应力状态内聚力模型的固体火箭发动机粘接界面脱粘分析[J]. 固体火箭技术, 2020, 43(5): 554-559. ZHOU P, FANG C P, WANG G L, et al. Debonding analysis of adhesive interface in SRM based on complex stress-state cohesive zone model[J]. Journal of Solid Rocket Technology, 2020, 43(5): 554-559. (in Chinese) [28] 孙博, 朵英贤, 蒙上阳. 基于J积分分析固体火箭发动机药柱界面裂纹的稳定性[J]. 北京理工大学学报, 2018, 38(2): 124-129. SUN B, DUO Y X, MENG S Y. Stability analysis of the interfacial debonded crack in solid rocket motor grain with the J-integral[J]. Transactions of Beijing Institute of Technology, 2018, 38(2): 124-129. (in Chinese) [29] 王立波. 燃烧条件下脱粘面扩展过程的实验研究与理论分析[D]. 烟台:海军航空工程学院, 2000. WANG L B. Experimental research and theoretical analysis of debonding surface expansion process under combustion[D]. Yantai: Naval Aeronautical and Astronautical University, 2000. (in Chinese) [30] SCHAPERY R A. Analysis of damage growth in particulate composites using a work potential[J]. Composites Engineering, 1991, 1(3): 167-182. [31] SCHAPERY R A. A theory of mechanical behavior of elastic media with growing damage and other changes in structure[J]. Journal of the Mechanics and Physics of Solids, 1990, 38(2): 215-213. [32] IDE K M, HO S Y, WILLIAMS D. Fracture behavior of accelerated aged solid rocket propellants[J]. Journal of Materials Science, 1999, 34: 4209-4218. [33] 常新龙, 余堰峰, 张有宏, 等. HTPB推进剂老化断裂性能试验[J]. 推进技术, 2011, 32(4): 564-568. CHANG X L, YU Y F, ZHANG Y H, et al. Test on aging fracture properties of HTPB propellant[J]. Journal of Propulsion Technology, 2011, 32(4): 564-568. (in Chinese) [34] 常新龙, 龙兵, 胡宽, 等. 固体推进剂断裂性能研究进展[J]. 火炸药学报, 2013, 36(3): 6-13. CHANG X L, LONG B, HU K, et al. Progress of study on the fracture performance of solid propellant[J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 6-13. (in Chinese) [35] 周广盼. 含缺陷固体火箭发动机推进剂断裂力学行为研究[D]. 南京:南京理工大学, 2013. ZHOU G P. Study on the fracture mechanics behavior of solid rocket motor propellant containing defects[D]. Nanjing:Nanjing University of Science and Technology, 2013. (in Chinese) [36] 伍鹏, 李高春, 王鑫. HTPB推进剂三点弯曲过程试验与数值模拟[J]. 含能材料, 2020, 28(6): 514-521. WU P, LI G C, WANG X. Experimental and numerical simulation on the damage process of HTPB propellant at the crack tip[J]. Chinese Journal of Energetic Materials, 2020, 28(6): 514- 521. (in Chinese) [37] 李高春, 李树谦, 郭宇, 等. 不同温度和拉伸速率下复合推进剂力学性能及破坏模式分析[J]. 固体火箭技术, 2019, 42(3): 297-302. LI G C, LI S Q, GUO Y, et al. Mechanical properties and failure mode of composite solid propellant under different temperatures and tensile rates[J]. Journal of Solid Rocket Technology, 2019, 42(3): 297-302. (in Chinese) [38] TAYLOR J W. The burning of secondary explosive powders by a convective mechanism[J]. Transactions of the Faraday Society, 1962, 58: 561-568. [39] GODAI T. Flame propagation into the crack of a solid propellant cracks[J]. AIAA Journal, 1970, 8(7): 1322-1327. [40] BOBOLEV V K, KARPUKHIN I A, CHUIKO S V. The mechanism by which combustion products penetrate into the pores of a charge of explosive material[J]. Doklady Akademii Nauk USSR, 1965, 162: 388-391. [41] KRASNOV Y K, MARGULIS V M, MARGOLIN A D, et al. Rate of penetration of combustion into the pores of an explosive charge[J]. Combustion, Explosion and Shock Wave, 1970, 6(3): 290-295. [42] MARGOLIN A D, MARGULIS V M. Penetration of combustion into an isolated pore in an explosive[J]. Combustion, Explosion and Shock Waves, 1969, 5(1): 15-16. [43] BELYAEV A F, KOROTKOV A I, SULIMOV A A. Development of combustion in an isolated pore[J]. Combustion, Explosion and Shock Waves, 1969, 5(1): 4-9. [44] JACOBS H R, WILLIAMS M L, TUFT D B. An experimental study of the pressure distribution in burning flaws in solid propellant grains[R]. Salt Lake City, UT, US: College of Engineering, University of Utah, 1972. [45] KUO K K, CHEN A T, DAVIS T R. Convective burning in solid- propellant cracks[J]. AIAA Journal, 1978, 16(6): 600- 607. [46] KUO K K, KUMAR M, MANTZARAS J. Different modes of cracks propagation in burning solid propellants[J]. Journal of Propulsion and Power, 1987, 3(1): 19-25. [47] KUMAR M. Flame propagation and combustion processes in solid propellant crack[J]. AIAA Journal, 1981, 19(5): 610-618. [48] KUMAR M, KUO K K. Effect of deformation on flame spreading and combustion in propellant cracks[J]. AIAA Journal, 1981, 19(12): 1580-1589. [49] KUMAR M, KUO K K. Ignition of solid propellant crack tip under rapid pressurization[J]. AIAA Journal, 1980, 18(7): 825- 833. [50] KUMAR M. A study of flame spreading and combustion process in solid propellant cracks[D]. Salt Lake City, UT, US: The Pennsylvania State University, 1980. [51] 何国强. 装药缺陷对固体火箭发动机性能影响研究[D].西安:西北工业大学, 2002. HE G Q. Research on the effect of charge defects on the perfor-mance of solid rocket motor[D]. Xi'an: Northwestern Polytechnical University, 2002. (in Chinese) [52] 何国强, 蔡体敏, 李江, 等. 含缺陷固体装药燃烧异常实验分析[J]. 推进技术, 1999, 20(3): 30-35. HE G Q, CAI T M, LI J, et al. Experimental study of anomalous combustion in solid propellant grain with defects[J]. Journal of Propulsion Technology, 1999, 20(3): 30-35. (in Chinese) [53] 胡春波, 何国强, 魏进家, 等. 带装药裂纹发动机内流场数值研究[J]. 推进技术, 2003, 24(1): 40-42. HU C B, HE G Q, WEI J J, et al. Influence of propellant crack on turbulence flow in solid rocket motor [J]. Journal of Propulsion Technology, 2003, 24(1): 40-42. (in Chinese) [54] 李江, 何国强, 蔡体敏. 固体推进剂裂纹对流燃烧流场的数值模拟[J]. 推进技术, 1999, 20(3): 36-39. LI J, HE G Q, CAI T M. Numerical analysis of convective burning flow field in propellant crack[J]. Journal of Propulsion Technology, 1999, 20(3): 36-39. (in Chinese) [55] 韩小云, 周建平. 固体推进剂裂纹对流燃烧和扩展的研究分析[J].推进技术, 1997, 18(6): 41-44, 59. HAN X Y, ZHOU J P. An investigation on crack propagation and convective combustion in solid propellants[J]. Journal of Propulsion Technology, 1997, 18(6): 41-44, 59. (in Chinese) [56] 韩小云, 周建平. 固体药柱燃烧断裂边界一维流场特性[J]. 推进技术, 1998, 19(5): 92-96, 109. HAN X Y, ZHOU J P. Characteristics of 2-D flow fields on the boundary of combustion fracture in solid propellant[J]. Journal of Propulsion Technology, 1998, 19(5): 92-96, 109. (in Chinese) [57] 韩小云, 周建平. 固体推进剂燃烧断裂边界二维流场特性[J]. 推进技术, 1998, 19(6): 20-23. HAN X Y, ZHOU J P. Characteristics of 2-D flow fields on combustion fracture boundary in solid propellant[J]. Journal of Propulsion Technology, 1998, 19(6): 20-23. (in Chinese) [58] 葛爱学. 固体火箭发动机点火过程与装药裂纹相互作用机理研究[D]. 长沙:国防科学技术大学, 2004. GE A X. Research on interaction mechanism between the ignition process of solid rocket motors and grain crack [D]. Changsha: National University of Defense Technology, 2004. (in Chinese) [59] 葛爱学, 许少华, 薛相海, 等, 张为华.含裂纹固体推进剂装药的内流场数值模拟[J]. 固体火箭技术, 2003, 26(1): 55- 58. GE A X, XU S H, XUE X H, et al. Numerical simulation of inner flow field in grain with cracks[J]. Journal of Solid Rocket Technology, 2003, 26 (1): 55-58. (in Chinese) [60] 原渭兰, 沈伟. 燃烧室升压梯度对固体推进剂裂纹燃烧与扩展影响的研究[J]. 航空动力学报, 2001, 16(2): 167-170. YUAN W L, SHEN W. Effect of chamber pressurization on crack combustion and propagation in solid propellant[J]. Journal of Aerospace Power, 2001, 16(2): 167-170. (in Chinese) [61] PETERSON E G, NIELSEN G C, JOHSION W C, et al. Generalized coordinate grain design and internal ballistics evaluation program[C]∥Proceedings of the 3rd Solid Propulsion Conference. Atlantic City, NJ, US: AIAA, 2013. [62] COATS D E, LEVINE J N, NICKERSON G R. A computer program for the prediction of solid propellant rocket motor perfor-mance: AFPRL-TR-75-36[R]. Antelope Valley, CA, US: Edwards Air Force Base, 1975. [63] 侯晓, 蹇泽群. 三维药柱燃面的通用积分计算法[J]. 固体火箭技术, 1993,16(3): 1-6. HOU X, JIAN Z Q. General integration calculation for burning surface of three-dimensional grain[J]. Journal of Solid Rocket Technology, 1993,16(3): 1-6. (in Chinese) [64] 周华盛. 药柱通用坐标计算法计算结果跳动的原因分析及解决途径[J]. 固体火箭技术, 1994,17(3): 8-16. ZHOU H S. Analysis and solution approach about pulsation cause of calculation results of the general coordinate calculation method of the grain[J]. Journal of Solid Rocket Technology, 1994,17(3): 8-16. (in Chinese) [65] 鲍福廷, 李逢春. 固体发动机装药CAD[J]. 固体火箭技术, 1994,17(3): 1-7. BAO F T,LI F C. Computer aided design of propellant grains for solid rocket motors[J]. Journal of Solid Rocket Technology, 1994,17(3): 1-7. (in Chinese) [66] 田维平, 王馄. 固体发动机药柱CAD及燃烧模拟分析[J]. 固体火箭技术, 1993,16(3): 14-22. TIAN W P, WANG K. Computer aided design and burning simulation analysis of solid rocket motor grains[J]. Journal of Solid Rocket Technology, 1993,16(3): 14-22. (in Chinese) [67] 方蜀州, 胡克娴. 固体火箭发动机三维药柱燃面退移仿真技术及燃面通用计算方法[J]. 固体火箭技术, 1993,16(4): 10-20. FANG S Z, HU K X. The general technique of emulation and calculating of burning surface of 3-D grain of solid rocket motors[J]. Journal of Solid Rocket Technology, 1993,16(4): 10-20. (in Chinese) [68] 熊文波, 刘宇, 杨劲松. 基于SolidWorks二次开发的嵌金属丝药柱燃面计算[J]. 北京航空航天大学学报, 2007, 33(12): 1400-1403. XIONG W B, LIU Y, YANG J S. Burning surface calculation for grain embedded metal wires based on SolidWorks API[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(12): 1400-1403. (in Chinese) [69] 熊文波, 刘宇, 谢侃, 等. SolidWorks二次开发在燃面计算中的应用[J]. 航空动力学报, 2008, 23(8): 1536-1540. XIONG W B, LIU Y, XIE K, et al. Application of SolidWorks API of grain burning surface calculation[J]. Journal of Aerospace Power, 2008, 23(8): 1536-1540. (in Chinese) [70] 颜仙荣, 于胜春, 王庆官. 实体造型技术与固体发动机装药燃面计算[J]. 固体火箭技术, 2003, 26(2): 20-22. YAN X R, YU S C, WANG Q G. The solid modeling technology and the grain-burning-area calculation[J]. Journal of Solid Rocket Technology, 2003, 26(2): 20-22. (in Chinese) [71] HEJL R J, HEISTER S D. Solid rocket motor grain burnback analysis using adaptive grids[J]. Journal of Propulsion & Power, 1971, 11(5): 1006-1011. [72] BRETON P L, RIBEREAU D, GODFROY F, et al. SRM performance analysis by coupling bidimensional surface burnback and pressure field computations[C]∥Proceedings of 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland, OH, US: AIAA, 1998. [73] 沈伟, 邢耀国. 基于非结构网格的燃面推进算法[J]. 固体火箭技术, 2005, 28(3): 176-179. SHEN W, XING Y G. A simulation method of burning surface regression based on unstructured mesh[J]. Journal of Solid Rocket Technology, 2005, 28(3): 176-179. (in Chinese) [74] JIAO X M. Face offsetting: a unified approach for explicit moving interfaces[J]. Journal of Computational Physics, 2007, 220(2): 612-625. [75] LI Q, HE G Q, LIU P J, et al. Coupled simulation of fluid flow and propellant burning surface regression in a solid rocket motor[J]. Computers & Fluids, 2014, 93: 146-152. [76] OSHER S, SETHIAN J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79: 12-49. [77] 秦飞. 固体火箭发动机复杂装药燃面算法研究[D]. 西安:西北工业大学, 2003. QIN F. Method research for burning surface calculation of solid rocket motor with complicated grain[D]. Xi'an: Northwestern Polytechnical University, 2003. (in Chinese) [78] 费阳. 含裂纹固体火箭发动机性能分析[D]. 长沙:国防科学技术大学, 2010. FEI Y. Analysis on the performance of solid rocket motor with cracked propellant grain[D]. Changsha: National University of Defense Technology, 2010. (in Chinese) [79] 费阳, 胡凡, 张为华, 等. 基于平行层推移的含表观裂纹缺陷固体发动机装药燃面计算[J]. 固体火箭技术, 2011, 34(4): 466-469. FEI Y, HU F, ZHANG W H, et al. Parallel-burning area calculation of propellant grain with surface cracks[J]. Journal of Solid Rocket Technology, 2011, 34(4): 466-469. (in Chinese) [80] WANG D H, FEI Y, HU F, et al. An integrated framework for solid rocket motor grain design optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(7): 1156-1170. [81] 韩万之. 基于Level-Set方法模拟复杂装药燃面退移瞬态内流场[D]. 哈尔滨:哈尔滨工程大学, 2016. HAN W Z. Simulation of the transient internal flow of SRM with the grain surface regression based on Level-Set method[D]. Harbin: Harbin Engineering University, 2016. (in Chinese) [82] 王革, 韩万之, 李冬冬, 等. 基于水平集方法和最小距离函数法的复杂装药燃面退移问题研究[J]. 兵工学报, 2017, 38(2): 280-291. WANG G, HAN W Z, LI D D, et al. Research on grain burning surface regression based on level-set method and minimum distance function[J]. Acta Armamentarii, 2017, 38(2): 280-291. (in Chinese) [83] 袁超. 基于浸入式边界方法的SRM燃面退移与流场耦合数值模拟[D]. 哈尔滨:哈尔滨工程大学, 2018. YUAN C. Numerical simulation of SRM grain regression and flow field based on immersed boundary method[D]. Harbin: Harbin Engineering University, 2018. (in Chinese) [84] OH S H, LEE H J, ROH T S. Development of a hybrid method in a 3-D numerical burn-back analysis for solid propellant grains[J]. Aerospace Science and Technology, 2020, 106: 106103. [85] 那旭东, 夏智勋, 马立坤, 等. 先进火箭仿真中心Rocstar程序概述[J]. 固体火箭技术, 2019, 42(1): 7-15. NA X D, XIA Z X, MA L K, et al. Introduction of Rocstar codes developed by the center for simulation of advanced rockets[J]. Journal of Solid Rocket Technology, 2019, 42(1): 7-15. (in Chinese) [86] 于胜春, 赵汝岩, 许涛, 等. 固体火箭发动机快速升压过程的流固耦合分析[J]. 固体火箭技术, 2008, 31(3): 232-235. YU S C, ZHAO R Y, XU T, et al. Analysis on fluid-structural coupling of solid rocket motor during rapid pressurization[J]. Journal of Solid Rocket Technology, 2008, 31(3): 232-235. (in Chinese) [87] 赵汝岩, 于胜春, 李昊, 等. 点火升压阶段药柱裂纹变形研究[J]. 固体火箭技术, 2009, 32(1): 43-47. ZHAO R Y, YU S C, LI H, et al. Analysis on propellant crack deformation during prompt pressurization[J]. Journal of Solid Rocket Technology, 2009, 32(1): 43-47. (in Chinese) [88] 韩波, 周长省, 陈雄. 固体推进剂裂纹内点火过程流固耦合数值仿真[J]. 固体火箭技术, 2011, 34(2): 180-183. HAN B, ZHOU C X, CHEN X. Numerical simulation of fluid-solid coupling in propellant crack during ignition[J]. Journal of Solid Rocket Technology, 2011, 34(2): 180-183. (in Chinese) [89] 高双武, 强洪夫, 周伟, 等. 基于子循环-预测校正的三维SRM点火瞬态流固耦合数值模拟[J]. 计算力学学报, 2011, 28(增刊1): 84-89. GAO S W, QIANG H F, ZHOU W, et al. Fluid-structure interaction numerical simulation of 3D SRM during ignition with subcycling based predict-correct scheme[J]. Chinese Journal of Computational Mechanics, 2011, 28(S1): 84-89. (in Chinese) [90] 高双武, 强洪夫, 周伟. 流固耦合数值模拟方法及其在分段式SRM的应用[J]. 弹箭与制导学报, 2012, 32(1): 111-113, 118. GAO S W, QIANG H F, ZHOU W. Fluid structure interaction method and its application in SRM with Segments[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(1): 111- 113, 118. (in Chinese) [91] 郭攀, 武文华, 刘君, 等. 激波作用下含缺陷固体火箭装药的流固耦合数值模拟[J]. 爆炸与冲击, 2014, 34(1): 93-98. GUO P, WU W H, LIU J, et al. Numerical simulation of fluid structure interaction in defect contained charge of solid rocket motor subjected to shock waves[J]. Explosion and Shock Waves, 2014, 34(1): 93-98. (in Chinese) [92] 金铭君, 李强. 冲击作用下推进剂变形的流固耦合分析方法[J]. 固体火箭技术, 2017, 40(2): 158-163. JIN M J, LI Q. A solid-fluid interaction model for propellant deformation under impact condition[J]. Journal of Solid Rocket Technology, 2017, 40(2): 158-163. (in Chinese) [93] HU C B, ZHANG X B. A riemann problem based coupling method for predicting the combustion of propellant in a gun launching process[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(6): 751-758. [94] 吕志. 固体推进剂药柱裂纹扩展分析[D]. 哈尔滨: 哈尔滨工业大学,2012. L Z. The analysis on crack growth of solid propellant[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese) [95] 邓康清, 张路, 庞爱民, 等. 自由装填式固体火箭发动机药柱低温点火结构完整性分析[J]. 固体火箭技术, 2018, 41(4): 428-434. DENG K Q, ZHANG L, PANG A M, et al. Analysis on structural integrity of a free loading solid propellant grains under ignition loading at low temperature[J]. Journal of Solid Rocket Technology, 2018, 41(4): 428-434. (in Chinese) [96] 岳小亮. 温度冲击载荷下药柱的力学响应研究[D]. 南京:南京理工大学, 2013. YUE X L. Research on mechanical response of grain under temperature shock load[D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese) [97] 侯宇菲, 许进升, 陈雄, 等. 考虑颗粒形状的复合固体推进剂细观损伤分析[J]. 固体火箭技术, 2019, 42(4): 440-446,475. HOU Y F, XU J S, CHEN X, et al. Microscopic damage analysis of composite solid propellants considering the particle shape[J]. Journal of Solid Rocket Technology, 2019, 42(4): 440-446,475. (in Chinese) [98] 封涛, 许进升, 韩龙, 等. 含初始缺陷的复合固体推进剂力学性能[J]. 航空材料学报, 2018, 38(3): 91-99. FENG T, XU J S, HAN L, et al. Mechanical properties of composite solid propellant with initial defects[J]. Journal of Aeronautical Materials, 2018, 38(3): 91-99. (in Chinese) [99] 韩龙. 复合固体推进剂细观损伤机理及本构模型研究[D]. 南京:南京理工大学, 2017. HAN L. Research on the mesoscopic damage mechanism and nonlinear viscoelastic constitutive model of composite propellant[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese) [100] 王广, 赵奇国, 武文明. 复合固体推进剂/衬层粘接界面细观结构数值建模及脱粘过程模拟[J]. 科学技术与工程, 2012, 12(30): 7972-7979. WANG G, ZHAO Q G, WU W M. Mesostructure numeric modeling and debonding procedure simulation of composite solid propellant/ liner bonding interface[J]. Science Technology and Engineering, 2012, 12(30): 7972-7979. (in Chinese) [101] 张志成, 戴开达, 陈静静. 固体推进剂/衬层粘接界面脱粘失效的数值模拟[J]. 科学技术与工程, 2020, 20(28): 11421-11427. ZHANG Z C, DAI K D, CHEN J J. Numerical simulation of debonding of solid propellant/liner bonding interface[J]. Science Technology and Engineering, 2020, 20(28): 11421-11427. (in Chinese) |
[1] | YAN Zechen, YUE Songlin, QIU Yanyu, WANG Jianping, ZHAO Yuetang, SHI Jie, LI Xu. Improvement on the Calculation Method for Reflected Pressure of Shock Wave in Underwater Explosion [J]. Acta Armamentarii, 2024, 45(4): 1196-1207. |
[2] | HE Jiawei, ZHAI Junyi, GAO Weipeng, LI Ye. Numerical Simulation of Flow Characteristics of the Underwater Vehicle with a Cylindrical Structure Based onDifferent Turbulence Models [J]. Acta Armamentarii, 2022, 43(S2): 53-63. |
[3] | WANG Ge, ZHANG Chun, LIN Zhiwei, WANG Baohua, TAN Hu, CHEN Chen. Research on's Opening Distance of AHEAD Ammunition [J]. Acta Armamentarii, 2022, 43(S1): 115-120. |
[4] | XU Hui, HUANG Chenlei, WANG Xikuo, LIU Kun, LI Zhongxin, WU Zhilin. Theoretical and Experimental Study of Projectile Dynamic Engraving Resistance [J]. Acta Armamentarii, 2022, 43(9): 2263-2273. |
[5] | CHANG Renjiu, XUE Xiaochun, YU Yonggang. Study on Interior Ballistic Characteristics of Cased Telescoped Ammunition with Dynamic Impact Engraving Considered [J]. Acta Armamentarii, 2022, 43(9): 2388-2398. |
[6] | WANG Xiaodong, XU Yongjie, DONG Fangdong, WANG Hao, ZHENG Nana. Numerical Simulation of Penetration Resistance of Kevlar and Ceramic Composite Structures [J]. Acta Armamentarii, 2022, 43(9): 2360-2366. |
[7] | GUAN Dian, GUO Yawen, LI Shipeng, TANG Jianing, WANG Ningfei. Influence of Gas-particle Two-phase Flow on Ignition of the Solid Rocket Motor under Lateral Acceleration [J]. Acta Armamentarii, 2022, 43(8): 1792-1807. |
[8] | JIA Qiming, JIANG Yi, YANG Ying, ZHAO Zixi, WANG Zhihao. A New Type of Controllable Thrust Vertical Launcher and its Interior Ballistic Law [J]. Acta Armamentarii, 2022, 43(7): 1596-1605. |
[9] | GAO Yueguang, FENG Shunshan, LIU Yunhui, HUANG Qi. Initial Velocity Distribution of Fragments from Cylindrical Charge Shells with Different Thick End Caps [J]. Acta Armamentarii, 2022, 43(7): 1527-1536. |
[10] | ZENG Peigao, JIANG Yi, YANG Lina. Interior Ballistics of Independent Water-surface Launching Canister [J]. Acta Armamentarii, 2022, 43(6): 1266-1276. |
[11] | L Dailong, CHEN Shaosong, XU Yihang, QIU Jiawei. Aerodynamic Characteristics of Close-coupled Canard Missile [J]. Acta Armamentarii, 2022, 43(6): 1316-1325. |
[12] | GU Xingpeng, LI Junwei, QIAO Wensheng, WU Sheng, HAN Lei, WANG Qi, WANG Ningfei. Motion Trajectory of Solid Particles in C1xb Solid Rocket Motor [J]. Acta Armamentarii, 2022, 43(3): 489-502. |
[13] | WANG Danyu, NAN Fengqiang, LIAO Xin, XIAO Zhongliang, DU Ping, WANG Binbin. Effect of Flame Inhibitor of the Muzzle Flame of Large Caliber Gun [J]. Acta Armamentarii, 2022, 43(2): 273-278. |
[14] | XU Gancheng, YUAN Weize, CHEN Linheng, LI Chengxue, XIE Xuhu, NIE Mengqi. Seismic Collapse Resitance of NFB700 High-strength Steel Plate [J]. Acta Armamentarii, 2022, 43(2): 391-400. |
[15] | WANG Jingcheng, LI Xiaogang, YE Yaokun, DING Feng, XIONG Shihui, WEN Yuquan. Model Formulation and Influencing Factors for a Separation Nut Considering the Combustion of Multiple Pyrotechnic Charges [J]. Acta Armamentarii, 2022, 43(12): 3070-3081. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 422
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 592
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||