[1] Keel L H, Bhattacharyya S P. Controller synthesis free of analytical models: three term controllers[J]. IEEE Transactions on Automatic Control, 2008,53(6):1353 - 1369.
[2] Bajcinca N. Design of robust PID controllers using decoupling at singular frequencies [ J]. Automatica, 2006,42 (11):1943 -1949.
[3] Ho M T, Datta A, Bhattacharyya S P. Generalizations of the Hermite-Biehler theorem: the complex case[J]. Linear Algebra and Its Applications, 2000,320(1 -3):23 -26.
[4] Ackermann J, Kaesbauer D. Stable polyhedra in parameter space [J]. Automatica, 2003,39(5):937 -943.
[5] 方斌. 时滞系统PID 控制器参数稳定域的实现[J]. 电子科技大学学报, 2011,40(3):411 -417.
FANG Bin. Realization of PID controller parameter stable regions for time delay systems[J]. Journal of University of Electronic Science and Technology of China, 2011,40 (3): 411 - 417. (in Chinese)
[6] 方斌. 时滞系统PID 控制器增℃的稳定范围研究[J]. 信息与控制,2009,38(5):546 -551.
FANG Bin. On gain stabilizing regions of PID controller for time delay systems[J]. Information and Control,2009, 38(5):546 -551. (in Chinese)
[7] Grimm G, Hatfield J, Postlethwaite I, et al. Antiwindup for stable linear systems with input saturation: an LMI-based synthesis[J].IEEE Transactions on Automatic Control, 2004,48(9):1509 -
1525.
[8] Hu T, Teel A R, Zaccarian L. Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance[J]. Automatica, 2008,44(2):512 -519.
[9] Sajjadi-Kia S, Jabbari F. Scheduled static anti-windup augmentation synthesis for open-loop stable plants[C]//American Control Conference ( ACC), 2010. Baltimore: IEEE, 2010: 6751 -6756.
[10] Isayed B M,Hawwa M A. A nonlinear PID control scheme for hard disk drive servo systems [ C] //MED蒺07. Mediterranean Conference on Control & Automation. Athens: IEEE, 2007:1 -6.
[11] Huang Y, Yasunobu S. A general practical design method for fuzzy PID control from conventional PID control[C] //The 9th IEEE International Conference on Fuzzy Systems. Texas: IEEE,
2000:969 -972.
[12] Mhaskar P, El-Farra N H, Christodes P D. A method for PID controller tuning using nonlinear control techniques [C] //Proceeding of the 2004 American Control Conference. Massachusetts: IEEE, 2004:2925 -2930.
[13] Santibanez V, Kelly R, Zavala-Rio A, et al. A new saturated nonlinear PID global regulator for robot manipulators[C]//Proceeding of the 17th IFAC Word Congress. Korea: IFAC, 2008:11690 -11695.
[14] Zavala-Rio A,Santibanez V. Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs[J]. IEEE Transactions on Control Systems Technology, 2006,14(5):958 -965.
[15] Zavala-Rio A, Santibanez V. A natural saturating extension of the PD with desired gravity compensation control law for robot manipulators with bounded inputs[J]. IEEE Transactions on Robotics, 2007,23(2):386 -391.
[16] Alvarez-Ramirez J, Santibanez V, Campa R. Stability of robot manipulators under saturated PID compensation[J]. IEEE Transactions on Control Systems Technology, 2008,16(6):1333 -1341.
[17] Fang B. New approach to the realization of PID controller parameter stable regions[C]//IEEE International Conference on Computer Science and Automation Engineering. Shanghai: IEEE,2011:627 -631. |