[1] Jing Z J, Yu C, Chen G R. Complex dynamics in a permanent-magnet synchronous motor model[J]. Chaos, Solitons & Fractals,2004, 22(4): 831 -848. [2] Li Z, Park J B, Joo Y H, et al. Bifurcations and chaos in a permanent-magnet synchronous motor[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(3): 383 -387. [3] Zribi M, Oteafy A, Nejib Sma O. Controlling chaos in the permanent magnet synchronous motor[J]. Chaos, Solitons & Fractals,2009, 41(3): 1266 -1276. [4] Lan Y, Li Q G. Control of Hopf bifurcation in a simple plankton population model with a non-integer exponent of closure[J]. Applied Mathematics and Computation, 2008, 200(1): 220 -230. [5] 王海军, 李畸勇. 机床无刷直流电机的混沌状态控制仿真研究[J]. 制造业自动化, 2011, 33(3):70 -73. WANG Hai-jun, LI Ji-yong. Simulating research on chaos system in brushless DC motor of machine [J]. Manufacturing Automation, 2011, 33(3):70 -73. (in Chinese) [6] Wei Z, Yang Q. Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci[J]. Applied Mathematics and Computation, 2010, 217(1): 422 -429. [7] Braga D C, Mello L F, Rocf O C, et al. Controllable Hopf bifurcations of codimension 1 and 2 in nonlinear control systems[J].Nonlinear Analysis: Theory, Methods & Applications, 2011, 74(9): 3046 -3054. [8] 张家忠. 非线性动力系统的运动稳定性、分岔理论及应用[M]. 西安:西安交通大学出版社,2010:75 -76. ZHANG Jia-zhong. Movement stability and bifurcation theory of nonlinear dynamical systems and it's application[M]. Xi'an: Xi'an Jiaotong University Press, 2010:75 -76. (in Chinese) [9] 刘素华. 三维和四维非线性系统Hopf 分岔反馈控制[D]. 长沙:湖南大学,2008. LIU Su-hua. Feedback control of Hopf bifurcation in two classes of nonlinear high dimentional systems[D]. Changsha: Hunan University, 2008. (in Chinese) [10] 张琪昌, 王洪礼, 竺致文,等. 分岔与混沌理论及应用[M].天津:天津大学出版社,2005:147 -150. ZHANG Qi-chang, WANG Hong-li, ZHU Zhi-wen, et al. Theory and application of bifurcation and chaos [M]. Tianjin: Tianjin University Press, 2005:147 -150. (in Chinese) |