[1] Noether A E. Nachr kgl ges wiss gttingen[J]. Mathematical Physics, 1918,KI II 235. [2] 梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京:科学出版社,1999. MEI Feng-xiang. Applications of Lie groups and Lie algebras to constrained mechanical systems[M]. Beijing:Science Press,1999. (in Chinese) [3] Lutzky M. Dynamical symmetries and conserved quantities [J]. Journal of Physics A:Mathematical and General,1979, 12(7):973-982. [4] Mei F X. Form invariance of Appell equations[J]. Chinese Physics,2001 10(3):177-180. [5] Fang J H. Mei symmetry and Lie symmetry of the rotational relativistic variable mass system[J]. Communications in Theoretical Physics,2003, 40(3):269-272. [6] 罗绍凯. Hamilton系统的Mei对称性、Noether对称性和Lie对称性[J]. 物理学报,2003,52(12):2941-2944. LUO Shao-kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system[J]. Chinese Physics, 2003,52(12):2941-2944. (in Chinese) [7] 梅凤翔. 约束力学系统的对称性与守恒量[M]. 北京:北京理工大学出版社,2004. MEI Feng-xiang. Symmetries and conserved quantities of constrained mechanical systems[M]. Beijing: Beijing Institute of Technology Press,2004. (in Chinese) [8] 张毅. 广义经典力学系统的对称性与Mei守恒量[J]. 物理学报,2005,54(7):2980-2984. ZHANG Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics[J]. Chinese Physics,2005,54(7):2980-2984. (in Chinese) [9] Guo Y X,Jiang L Y,Yu Y. Symmetries of mechanical systems with nonlinear nonholonomic constraints[J]. Chinese Physics,2001,10(3):181-185. [10] Wu H B. A new conserved quantity of mechanical systems with differential constraints[J]. Chinese Physics,2004,13(5):589-591. [11] Xu X J,Qin M C,Mei F X. Unified symmetry of holonomic mechanical systems[J]. Chinese Physics,2005,14(7):1287-1289. [12] Zhang H B,Chen L Q. The unified form of Hojman's conservation law and Lutzky's conservation law[J]. Journal of the Physical Society of Japan,2005,74(3):905-909. [13] Chen X W,Li Y M,Zhao Y H. Lie symmetries,perturbation to symmetries and adiabatic invariants of Lagrange system[J]. Physics Letters A,2005,337(4-6):274-278. [14] Fu J L,Chen L Q,Salvador Jiménez,et al. Non-Noether symmetries and Lutzky conserved quantities for mechanico-electrical systems[J]. Physics Letters A,2006,358(1):5-10. [15] Fang J H,Ding N,Wang P. A new type of conserved quantity of Mei symmetry for Lagrange system[J]. Chinese Physics,2007,16(4):887-890. [16] 葛伟宽. 一类动力学方程的Mei对称性[J]. 物理学报, 2007,56(1):1-4. GE Wei-kuan. Mei symmetries of a type of dynamical equations[J]. Chinese Physics,2007,56(1):1-4. (in Chinese) [17] 楼智美. 一类多自由度线性耦合系统的对称性与守恒量研究[J]. 物理学报,2007,56(5):2475-2478. LOU Zhi-Mei. The study of symmetries and conserved quantities for one class of linearly coupled multidimensional freedom systems[J]. Chinese Physics, 2007,56(5):2475-2478. (in Chinese) [18] 蔡建乐,梅凤翔. Lagrange系统Lie点变换下的共形不变性与守恒量[J]. 物理学报,2008,57(9):5369-5373. CAI Jian-le, MEI Feng-xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation[J]. Chinese Physics,2008,57(9):5369- 5373. (in Chinese) [19] Zheng S W,Xie J F,Chen W C. A new conserved quantity corresponding to Mei symmetry of Tzenoff equations for nonholonomic systems[J]. Chinese Physics Letters,2008,25(3):809-812. [20] 贾利群,崔金超,张耀宇,等. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量[J]. 物理学报,2009, 58(1):16-21. JIA Li-qun,CUI Jin-chao,ZHANG Yao-yu,et al. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system[J]. Chinese Physics,2009,58(1):16-21. (in Chinese) [21] 刘仰魁. 一般完整力学系统Mei对称性的一种守恒量[J]. 物理学报,2010,59(1):7-10. LIU Yang-kui. A kind of conserved quantity of Mei symmetry for general holonomic mechanical systems[J]. Chinese Physics,2010,59(1):7-10. (in Chinese)