[1] |
MERZHANOV A G, ABRAMOV V G. Thermal explosion of explosives and propellants. a review[J]. Propellants Explosives Pyrotechnics, 2010, 6(5):130-148.
|
[2] |
JIANG Y P, LIU H Y, XIE D B, et al. Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin[J]. Journal of Colloid and Interface Science, 2018, 530(21):163-170.
|
[3] |
GENG H T, LIU J C, GUO A R, et al. Fabrication of heat-resistant syntactic foams through binding hollow glass microspheres with phosphate adhesive[J]. Materials & Design, 2016, 95(7):32-38.
|
[4] |
XU X, ZHANG Q Q, HAO M L, et al. Double-negative index ceramic aerogels for thermal superinsulation[J]. Science, 2019, 363(5):723-727.
|
[5] |
方皓, 张连生. 快烤状态下隔热材料对炸药热反应特性的研究[C]//OSEC首届兵器工程大会论文集. 重庆: 中国兵工学会&重庆市科学技术协会, 2017.
|
|
FANG H, ZHANG L S. Study on the thermal response characteristics of insulation materials to explosives under fast cook-off condition[C]//Proceedings of OSEC First Weapons Engineering Conference. Chongqing: China Ordnance Society & Chongqing Association for Science and Technology, 2017. (in Chinese)
|
[6] |
李亮亮, 沈飞, 王胜强, 等. 外部涂层及包覆层对HAE装药快速烤燃实验的影响[J]. 火炸药学报, 2019, 42(2):202-206.
doi: 10.14077/j.issn.1007-7812.2019.02.017
|
|
LI L L, SHEN F, WANG S Q, et al. Effect of external shell coating and coating layer on fast cook-off test of HAE charge[J]. Chinese Journal of Explosives & Propellants, 2019, 42(2):202-206. (in Chinese)
|
[7] |
潘玥, 李定华, 杨荣杰, 等. 烤燃环境下引信及其包装材料的热防护涂层性能[J]. 兵工学报, 2021, 42(6):1169-1177.
doi: 10.3969/j.issn.1000-1093.2021.06.006
|
|
PAN Y, LI D H, YANG R J, et al. Performance of thermal protection coating of fuze and its packaging materials in cook-off test[J]. Acta Armamentarii, 2021, 42(6):1169-1177. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.06.006
|
[8] |
DU L X, JIN S H, SHU Q H, et al. The investigation of NTO/HMX-based plastic-bonded explosives and its safety performance[J]. Defence Technology, 2022, 18(1):72-80.
doi: 10.1016/j.dt.2021.04.002
|
[9] |
任艳. 炸药在高温环境下的热反应特性研究[D]. 北京: 北京理工大学, 2005.
|
|
REN Y. Investigation on explosive thermal character under high temperature[D]. Beijing: Beijing Institute of Technology, 2005. (in Chinese)
|
[10] |
DUAN Y, YANG Z, GE W C, et al. Explosive thermal analysis monitoring system based on virtual instrument[J]. Journal of Beijing Institute of Technology, 2021, 30(S):218-224.
|
[11] |
MII-STD-2105D. Non-unclear monitions risk assessment test[S]. Washington, D.C., US: Department of Defense, 2011.
|
[12] |
MII-STD-2105D. Policy for introduction and assessment of insensitive munitions(IM) Edition3[S]. North Atlantic Treaty Organization, NATO Standardization Agency, 2010.
|
[13] |
GROSS M L, MEREDITH K V, BECKSTEAD M W. Fast cook-off modeling of HMX[J]. Combustion and Flame, 2015, 162(9):3307-3315.
|
[14] |
SAHIN H, NARIN B, KURTULUS D F. Development of a design methodology against fast cook‐off threat for insensitive munitions[J]. Propellants Explosives Pyrotechnics, 2016, 41(3):580-587.
|
[15] |
王帅, 智小琦, 贾秋琳, 等. 基于mass flux法的炸药火烧实验与数值仿真[J]. 兵器装备工程学报, 2020, 41(8):1-6.
|
|
WANG S, ZHI X Q, JIA Q L, et al. Experiment and numerical simulation of explosive firing based on mass flux method[J]. Journal of Ordnance Equipment Engineering, 2020, 41(8):1-6. (in Chinese)
|
[16] |
ZHU M, WANG S A, HUANG H, et al. Numerical and experimental study on the response characteristics of warhead in the fast cook-off process[J]. Defence Technology, 2021, 17(4):1444-1452.
doi: 10.1016/j.dt.2020.08.001
|
[17] |
殷瑱, 闻泉, 王雨时, 等. 北约不敏感弹药标准试验方法[J]. 兵器装备工程学报, 2016, 37(10):1-7.
|
|
YIN Z, WEN Q, WANG Y S, et al. Standard experiment method of insensitive munition in NATO[J]. Journal of Ordnance Equipment Engineering, 2016, 37(10):1-7. (in Chinese)
|
[18] |
吴浩, 段卓平, 白孟璟, 等. DNAN基含铝炸药烤燃实验与数值模拟[J]. 含能材料, 2021, 29(5):414-421.
|
|
WU H, DUAN Z P, BAI M J, et al. Small-scale cook-off experiments and simulations of DNAN-based aluminized explosives[J]. Chinese Journal of Energetic Materials, 2021, 29(5):414-421. (in Chinese)
|
[19] |
胡坤, 顾中浩, 马海峰. CAE分析大系——ANSYS CFD疑难问题实例详解[M]. 北京: 人民邮电出版社, 2020.
|
|
HU K, GU Z H, MA H F. CAE analysis system——examples of ANSYS CFD difficult problems[M]. Beijing: People’s Post and Telecommunications Publishing House, 2020. (in Chinese)
|
[20] |
刘瑞峰. DNAN基熔铸炸药烤燃响应特性[D]. 北京: 北京理工大学, 2022.
|
|
LIU R F. Cookoff response characteristics of DNAN-based melt-cast explosives[D]. Beijing: Beijing Institute of Technology, 2022. (in Chinese)
|