Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (5): 1456-1468.doi: 10.12382/bgxb.2022.0067
Previous Articles Next Articles
JIANG Xinhao, CAI Wei*(), ZHANG Zhili, JIANG Bo, YANG Zhiyong, WANG Xin
Received:
2022-01-27
Online:
2022-08-10
Contact:
CAI Wei
JIANG Xinhao, CAI Wei, ZHANG Zhili, JIANG Bo, YANG Zhiyong, WANG Xin. Camouflaged Object Segmentation Based on COSNet[J]. Acta Armamentarii, 2023, 44(5): 1456-1468.
Add to citation manager EndNote|Ris|BibTeX
平移矩阵 | 旋转矩阵 |
---|---|
Hshift= | Hrotation= |
水平翻转矩阵 | 垂直翻转矩阵 |
Hhorizon= | Hvertical= |
缩放矩阵 | 错切矩阵 |
Hscale= | Hshear= |
Table 1 Transformation matrix
平移矩阵 | 旋转矩阵 |
---|---|
Hshift= | Hrotation= |
水平翻转矩阵 | 垂直翻转矩阵 |
Hhorizon= | Hvertical= |
缩放矩阵 | 错切矩阵 |
Hscale= | Hshear= |
属性 | 描述 | 数量 |
---|---|---|
春季山林 | 800 | |
伪装人员 | 夏季山林 | 900 |
秋季山林 | 400 | |
冬季山林 | 500 | |
伪装坦克 | 复杂环境 | 100 |
自然环境 | 不含伪装目标 | 1300 |
Table 2 Dataset overview
属性 | 描述 | 数量 |
---|---|---|
春季山林 | 800 | |
伪装人员 | 夏季山林 | 900 |
秋季山林 | 400 | |
冬季山林 | 500 | |
伪装坦克 | 复杂环境 | 100 |
自然环境 | 不含伪装目标 | 1300 |
算法 | 来源 | Dicmean | IoUmean | Senmean | Spemean | Sm | MAE | adpEm | adpFm |
---|---|---|---|---|---|---|---|---|---|
UNet++□ | DLMIA’17 | 0.513 | 0.421 | 0.471 | 0.747 | 0.717 | 0.009 | 0.736 | 0.532 |
SCRN◇ | ICCV’19 | 0.687 | 0.575 | 0.726 | 0.955 | 0.847 | 0.010 | 0.677 | 0.761 |
BASNet◇ | CVPR’19 | 0.763 | 0.666 | 0.758 | 0.950 | 0.865 | 0.008 | 0.928 | 0.782 |
F3Net◇ | AAAI’20 | 0.816 | 0.716 | 0.846 | 0.972 | 0.889 | 0.005 | 0.944 | 0.824 |
PraNet□ | MICCAI’20 | 0.802 | 0.696 | 0.834 | 0.977 | 0.887 | 0.006 | 0.915 | 0.814 |
SINet-V1▯ | CVPR’20 | 0.810 | 0.706 | 0.842 | 0.977 | 0.876 | 0.005 | 0.965 | 0.813 |
PFNet▯ | CVPR’21 | 0.785 | 0.682 | 0.804 | 0.965 | 0.873 | 0.006 | 0.941 | 0.794 |
UACANet-L□ | ACM MM’21 | 0.817 | 0.715 | 0.853 | 0.979 | 0.880 | 0.004 | 0.963 | 0.820 |
COSNet▯ | 本文算法 | 0.864 | 0.775 | 0.913 | 0.989 | 0.921 | 0.003 | 0.944 | 0.872 |
Table 3 Comparative experiment result 1 on self-built MiCOD dataset (Each picture contains camouflage objects)
算法 | 来源 | Dicmean | IoUmean | Senmean | Spemean | Sm | MAE | adpEm | adpFm |
---|---|---|---|---|---|---|---|---|---|
UNet++□ | DLMIA’17 | 0.513 | 0.421 | 0.471 | 0.747 | 0.717 | 0.009 | 0.736 | 0.532 |
SCRN◇ | ICCV’19 | 0.687 | 0.575 | 0.726 | 0.955 | 0.847 | 0.010 | 0.677 | 0.761 |
BASNet◇ | CVPR’19 | 0.763 | 0.666 | 0.758 | 0.950 | 0.865 | 0.008 | 0.928 | 0.782 |
F3Net◇ | AAAI’20 | 0.816 | 0.716 | 0.846 | 0.972 | 0.889 | 0.005 | 0.944 | 0.824 |
PraNet□ | MICCAI’20 | 0.802 | 0.696 | 0.834 | 0.977 | 0.887 | 0.006 | 0.915 | 0.814 |
SINet-V1▯ | CVPR’20 | 0.810 | 0.706 | 0.842 | 0.977 | 0.876 | 0.005 | 0.965 | 0.813 |
PFNet▯ | CVPR’21 | 0.785 | 0.682 | 0.804 | 0.965 | 0.873 | 0.006 | 0.941 | 0.794 |
UACANet-L□ | ACM MM’21 | 0.817 | 0.715 | 0.853 | 0.979 | 0.880 | 0.004 | 0.963 | 0.820 |
COSNet▯ | 本文算法 | 0.864 | 0.775 | 0.913 | 0.989 | 0.921 | 0.003 | 0.944 | 0.872 |
算法 | 来源 | Dicmean | IoUmean | Senmean | Spemean | Sm | MAE | adpEm | adpFm |
---|---|---|---|---|---|---|---|---|---|
UNet++□ | DLMIA’17 | 0.346 | 0.284 | 0.318 | 0.504 | 0.809 | 0.006 | 0.543 | 0.359 |
SCRN◇ | ICCV’19 | 0.442 | 0.366 | 0.470 | 0.638 | 0.816 | 0.069 | 0.777 | 0.496 |
BASNet◇ | CVPR’19 | 0.516 | 0.451 | 0.522 | 0.631 | 0.903 | 0.014 | 0.917 | 0.527 |
F3Net◇ | AAAI’20 | 0.536 | 0.469 | 0.572 | 0.644 | 0.919 | 0.004 | 0.649 | 0.542 |
PraNet□ | MICCAI’20 | 0.534 | 0.463 | 0.553 | 0.656 | 0.914 | 0.008 | 0.931 | 0.540 |
SINet-V1▯ | CVPR’20 | 0.542 | 0.471 | 0.563 | 0.656 | 0.907 | 0.017 | 0.956 | 0.546 |
PFNet▯ | CVPR’21 | 0.528 | 0.459 | 0.542 | 0.647 | 0.915 | 0.004 | 0.812 | 0.534 |
UACANet-L□ | ACM MM’21 | 0.552 | 0.484 | 0.572 | 0.661 | 0.919 | 0.004 | 0.978 | 0.554 |
COSNet▯ | 本文算法 | 0.608 | 0.559 | 0.622 | 0.670 | 0.956 | 0.003 | 0.991 | 0.610 |
Table 4 Comparative experiment result 2 on self-built MiCOD dataset (The camouflaged object are not always present)
算法 | 来源 | Dicmean | IoUmean | Senmean | Spemean | Sm | MAE | adpEm | adpFm |
---|---|---|---|---|---|---|---|---|---|
UNet++□ | DLMIA’17 | 0.346 | 0.284 | 0.318 | 0.504 | 0.809 | 0.006 | 0.543 | 0.359 |
SCRN◇ | ICCV’19 | 0.442 | 0.366 | 0.470 | 0.638 | 0.816 | 0.069 | 0.777 | 0.496 |
BASNet◇ | CVPR’19 | 0.516 | 0.451 | 0.522 | 0.631 | 0.903 | 0.014 | 0.917 | 0.527 |
F3Net◇ | AAAI’20 | 0.536 | 0.469 | 0.572 | 0.644 | 0.919 | 0.004 | 0.649 | 0.542 |
PraNet□ | MICCAI’20 | 0.534 | 0.463 | 0.553 | 0.656 | 0.914 | 0.008 | 0.931 | 0.540 |
SINet-V1▯ | CVPR’20 | 0.542 | 0.471 | 0.563 | 0.656 | 0.907 | 0.017 | 0.956 | 0.546 |
PFNet▯ | CVPR’21 | 0.528 | 0.459 | 0.542 | 0.647 | 0.915 | 0.004 | 0.812 | 0.534 |
UACANet-L□ | ACM MM’21 | 0.552 | 0.484 | 0.572 | 0.661 | 0.919 | 0.004 | 0.978 | 0.554 |
COSNet▯ | 本文算法 | 0.608 | 0.559 | 0.622 | 0.670 | 0.956 | 0.003 | 0.991 | 0.610 |
算法 | 来源 | Dicmean | IoUmean | Senmean | Spemean | Sm | MAE | adpEm | adpFm |
---|---|---|---|---|---|---|---|---|---|
UNet++□ | DLMIA’17 | 0.529 | 0.416 | 0.553 | 0.859 | 0.678 | 0.067 | 0.763 | 0.549 |
BASNet◇ | CVPR’19 | 0.490 | 0.381 | 0.611 | 0.865 | 0.663 | 0.097 | 0.732 | 0.505 |
SCRN◇ | ICCV’19 | 0.640 | 0.529 | 0.676 | 0.926 | 0.791 | 0.052 | 0.799 | 0.709 |
F3Net◇ | AAAI’20 | 0.675 | 0.565 | 0.709 | 0.940 | 0.781 | 0.049 | 0.851 | 0.687 |
PraNet□ | MICCAI’20 | 0.700 | 0.595 | 0.737 | 0.939 | 0.799 | 0.045 | 0.866 | 0.726 |
SINet-V1▯ | CVPR’20 | 0.714 | 0.608 | 0.737 | 0.948 | 0.806 | 0.039 | 0.883 | 0.724 |
PFNet▯ | CVPR’21 | 0.722 | 0.617 | 0.749 | 0.952 | 0.810 | 0.038 | 0.886 | 0.732 |
UACANet-L□ | ACM MM’21 | 0.745 | 0.646 | 0.763 | 0.945 | 0.816 | 0.034 | 0.901 | 0.748 |
COSNet▯ | 本文算法 | 0.765 | 0.659 | 0.769 | 0.956 | 0.837 | 0.032 | 0.901 | 0.771 |
Table 6 Comparative experimental results on general camouflaged object dataset
算法 | 来源 | Dicmean | IoUmean | Senmean | Spemean | Sm | MAE | adpEm | adpFm |
---|---|---|---|---|---|---|---|---|---|
UNet++□ | DLMIA’17 | 0.529 | 0.416 | 0.553 | 0.859 | 0.678 | 0.067 | 0.763 | 0.549 |
BASNet◇ | CVPR’19 | 0.490 | 0.381 | 0.611 | 0.865 | 0.663 | 0.097 | 0.732 | 0.505 |
SCRN◇ | ICCV’19 | 0.640 | 0.529 | 0.676 | 0.926 | 0.791 | 0.052 | 0.799 | 0.709 |
F3Net◇ | AAAI’20 | 0.675 | 0.565 | 0.709 | 0.940 | 0.781 | 0.049 | 0.851 | 0.687 |
PraNet□ | MICCAI’20 | 0.700 | 0.595 | 0.737 | 0.939 | 0.799 | 0.045 | 0.866 | 0.726 |
SINet-V1▯ | CVPR’20 | 0.714 | 0.608 | 0.737 | 0.948 | 0.806 | 0.039 | 0.883 | 0.724 |
PFNet▯ | CVPR’21 | 0.722 | 0.617 | 0.749 | 0.952 | 0.810 | 0.038 | 0.886 | 0.732 |
UACANet-L□ | ACM MM’21 | 0.745 | 0.646 | 0.763 | 0.945 | 0.816 | 0.034 | 0.901 | 0.748 |
COSNet▯ | 本文算法 | 0.765 | 0.659 | 0.769 | 0.956 | 0.837 | 0.032 | 0.901 | 0.771 |
基线网络 | 添加KPFM | 添加RFAM | Dicmean | IoUmean | Senmean | Spemean | Sm | MAE | adpEm | adpFm |
---|---|---|---|---|---|---|---|---|---|---|
√ | 0.335 | 0.232 | 0.813 | 0.745 | 0.507 | 0.179 | 0.498 | 0.515 | ||
√ | √ | 0.413 | 0.346 | 0.767 | 0.720 | 0.523 | 0.191 | 0.638 | 0.622 | |
√ | √ | 0.814 | 0.712 | 0.835 | 0.983 | 0.886 | 0.005 | 0.952 | 0.821 | |
√ | √ | √ | 0.864 | 0.775 | 0.913 | 0.989 | 0.921 | 0.003 | 0.944 | 0.872 |
Table 8 Ablation experimental results on self-built MiCOD dataset
基线网络 | 添加KPFM | 添加RFAM | Dicmean | IoUmean | Senmean | Spemean | Sm | MAE | adpEm | adpFm |
---|---|---|---|---|---|---|---|---|---|---|
√ | 0.335 | 0.232 | 0.813 | 0.745 | 0.507 | 0.179 | 0.498 | 0.515 | ||
√ | √ | 0.413 | 0.346 | 0.767 | 0.720 | 0.523 | 0.191 | 0.638 | 0.622 | |
√ | √ | 0.814 | 0.712 | 0.835 | 0.983 | 0.886 | 0.005 | 0.952 | 0.821 | |
√ | √ | √ | 0.864 | 0.775 | 0.913 | 0.989 | 0.921 | 0.003 | 0.944 | 0.872 |
[1] |
doi: 10.1098/rstb.2008.0217 URL |
[2] |
doi: 10.1098/rsbl.2008.0173 URL |
[3] |
doi: 10.1007/s10692-008-9030-9 URL |
[4] |
doi: 10.1109/TGRS.2021.3100578 |
[5] |
doi: 10.1007/s00530-021-00802-9 |
[6] |
|
[7] |
周静, 窦一民, 李金屏. 基于光流场分割的伪装色运动目标检测[J]. 济南大学学报(自然科学版), 2020, 34(4):328-334.
|
|
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
doi: 10.1109/JAS.2021.1004057 URL |
[21] |
doi: 10.1109/TIP.2021.3130490 URL |
[22] |
梁新宇, 林浩坤, 杨辉, 等. 军用伪装目标图像语义分割数据集的构建[J]. 激光与光电子学进展, 2021, 58(4):0410015.
|
|
|
[23] |
doi: 10.1098/rspb.2013.0064 URL |
[24] |
doi: 10.1109/TPAMI.34 URL |
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
doi: 10.1109/TMI.2019.2959609 pmid: 31841402 |
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[1] | ZHANG Boyao, LENG Yanbing. Detection of Metal Surface Scratch Based on YOLOv4 Network Model [J]. Acta Armamentarii, 2022, 43(S1): 214-221. |
[2] | TIAN Xiangxuan, LI Junqi, JIN Liya, LIU Zhengren, SHI Zhiqiang. Simulation Dataset Usability Evaluation Algorithm Based on Correlation Analysis for the Command Information System [J]. Acta Armamentarii, 2021, 42(2): 399-407. |
[3] | KONG Xiao-fang, CHEN Qian, GU Guo-hua, QIAN Wei-xian, REN Kan, WANG Jia-jie. A GPS-based Camera Calibration Method [J]. Acta Armamentarii, 2016, 37(12): 2301-2307. |
[4] | WEN Yin-tang, WANG Hong-rui, ZHANG Yu-yan, WANG Zhen-chun, ZHAN Zai-ji, LIANG Bo. Measurement Method of Launch Caliber Expansion Deformation of Electromagnetic Railgun [J]. Acta Armamentarii, 2013, 34(10): 1227-1230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||