LI Xiaoxiong, ZHANG Shuning, ZHAO Huichang, CHEN Si. Identification of Fuzzy Small-sample Terrain Targets Based on 1DC-CGAN and Wavelet Energy Features[J]. Acta Armamentarii, 2022, 43(10): 2545-2553.
[1] 赵惠昌.无线电引信设计原理与方法[M].北京:国防工业出版社,2012:153-161. ZHAO H C.Fundamentals and methodology of radio fuze[M].Beijing:National Defense Industry Press,2012:153-161.(in Chinese) [2] 黄忠华,李银林.超宽带近感探测原理[M].北京:北京理工大学出版社,2019:1-4. HUANG Z H,LI Y L.Principles of ultra-wideband proximity sensing detection[M].Beijing:Beijing Institute of Technology Press,2019:1-4. (in Chinese) [3] 沈磊,黄忠华.超宽带无线电引信回波信号建模与仿真[J].兵工学报,2015,36(5):795-800. SHEN L,HUANG Z H.Modeling and simulation of ultra-wideband radio fuze echo signal[J].Acta Armamentarii,2015,36(5):795-800. (in Chinese) [4] 韩东波,洪飞.与弹头共型的超宽带微带引信天线[J]. 探测与控制学报,2019,41(2):40-43. HAN D B,HONG F.Ultra-wideband microstrip fuze antenna with warhead copattern[J].Journal of Detection & Control,2019,41(2): 40-43. (in Chinese) [5] 韩广超,王锋,赵河明,等.种新的变步长LMS自适应滤波算法及其应用[J].中北大学学报,2017,38(2):140-144. HAN G C,WANG F,ZHAO H M,et al.A new variable-step LMS adaptive filtering algorithm and its application[J].Journal of North Central University,2017,38(2):140-144. (in Chinese) [6] 岛新煜,高敏,李超旺.复杂地形条件下近炸引信回波信号分析[J].现代防御技术,2019,47(1):176-182. DAO X Y,GAO M,LI C W.Analysis of near-blast fuze echo signals under complex terrain conditions[J].Modern Defense Technology,2019,47(1):176-182.(in Chinese) [7] 纪永祥.复杂地形对无线电引信近炸性能影响的分析[J].现代引信,1995(3):23-27. JI Y X. Analysis of the effect of complex terrain on the near-blast performance of radio fuzes[J].Modern Fuze,1995(3):23-27.(in Chinese) [8] YU J M,ZHOU G Y,ZHOU S B.A lightweight fully convolutional neural network for SAR automatic target recognition[J]. Remote Sensing,MDPI AG,2021,13(15): 3029. [9] 丁斌,夏雪,梁雪峰.基于深度生成对抗网络的海杂波数据增强方法[J].电子与信息学报,2021,43(7):1985-1991. DING B,XIA X,LIANG X F.A sea clutter data enhancement method based on deep generative adversarial networks[J].Journal of Electronics & Information Technology,2021,43(7):1985-1991. (in Chinese) [10] LOEY M,SMARANDACHE F,KHALIFA N E M.Within the lack of chest COVID-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning[J].Symmetry,MDPI AG,2020,12(4): 651. [11] WANG A L,XUE D,WU H B.LiDAR data classification based on improved conditional generative adversarial networks[J].IEEE Access,2020,8: 209674. [12] 杨龙,苏娟,李响.基于生成式对抗网络的合成孔径雷达舰船数据增广在改进单次多盒检测器中的应用[J].兵工学报,2019,40(12):2488-2496. YANG L,SU J,LI X. Application of synthetic aperture radar ship data augmentation based on generative adversarial networks in improving single multibox detectors[J].Acta Armamentarii,2019,40(12): 2488-2496. (in Chinese) [13] IOFFE S,SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]∥Proceedings of the 32nd International Conference on Machine Learning.Lille, France:PMLR,2015:448-456. [14] LIM S,LEE S,JUNG J. Detection and localization of people inside vehicle using impulse radio ultra-wideband radar sensor[J].IEEE Sensors Journal,2019,99:1-1. [15] LEI Y G,HE Z J,ZI Y Y.Application of the EEMD method to rotor fault diagnosis of rotating machinery[J].Mechanical Systems and Signal Processing,2009,23(4):1327-1338. [16] HUNG N E,SHEN Z,LONG S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time series analysis[J].Proceeding of Royal Society London A,1998,454:903-995. [17] GOODFELLOW I,POUGET-ABADIE J,MIRZA M. Generative adversarial networks[J].Advances in Neural Infomation Processing Systems,2014,3:2672-2680. [18] EROL B,GURBUZ S Z,AMIN M G.Motion classification using kinematically sifted ACGAN-synthesized radar micro-doppler signatures[J].IEEE Transactions on Aerospace and Electronic Systems,2020,99:1-1. [19] MIRZA M,OSINDERO S.Conditional generative adversarial nets: arXiv1411. 1784[R/OL].Ithaca,NY,US:Cornell University,2014(2014-11-06)[2020-12-25].https:∥arxiv. org/abs/1411.1784. [20] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial network:arXiv1511.06434 [R/OL]. Ithaca,NY,US:Cornell University,2015(2015-11-19)[2021-02-07]. https:∥arxiv.org /abs/1511.06434. [21] HERSHEY J R, OLSEN P A. pproximating the kullback leibler divergence between gaussian mixture models[C]∥ Proceedings of IEEE International Conference on Acoustics.Washington,DC,US:IEEE,2007. [22] 石明江,罗仁泽,付元华.小波和能量特征提取的旋转机械故障诊断方法[J].电子测量与仪器学报,2015,29(8): 1114-1120. SHI M J,LUO R Z,FU Y H.Wavelet and energy feature extraction for fault diagnosis of rotating machinery[J].Journal of Electronic Measurement and Instrumentation,2015,29(8): 1114-1120. (in Chinese) [23] ZHANG J R,ZHANG J,LOK T M.A hybrid particle swarm optimization back-propagation algorithm for feedforward neural network training[J].Applied mathematics and computation,2007,185(2):1026-1037. [24] GAO F,JIANG T A method of target detection and identifi cation based on UWB and PSO-WNN[C]∥Proceedings of the 2nd International Conference on Communications,Signal Processing,and Systems.Tianjin,China:Springer,2014: 443-451. [25] 蒋留兵,吉雅雯,杨涛,等.基于双谱特征的超宽带雷达人体目标识别[J]. 电讯技术,2015,55(9): 953-958. JIANG L B,JI Y W, YANG T,et al. Ultra-wideband radar human target recognition based on bispectral features[J]. Telecommunications Echnology,2015,55(9):953-958. (in Chinese)