[1] |
WU X, WEI C S, CHEN T Y, et al. On novel distributed fixed-time formation tracking of multiple hypersonic flight vehicles with collision avoidance[J]. Aerospace Science and Technology, 2023, 45(141): 108517.
|
[2] |
丁一波, 岳晓奎, 代洪华, 等. 考虑进气约束的高超声速飞行器预定性能控制[J]. 航空学报, 2021, 42(11):524838.
doi: 10.7527/S1000-6893.2020.24838
|
|
DING Y B, YUE X K, DAI H H, et al. Prescribed performance controller for flexible air-breathing hypersonic vehicle with considering inlet airflow constraint[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):524838. (in Chinese)
doi: 10.7527/S1000-6893.2020.24838
|
[3] |
WANG X, XU B. Robust adaptive control of hypersonic flight vehicle with aero-servo-elastic effect[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2):1955-1964.
|
[4] |
WANG G, AN H, WANG Y M, et al. Intelligent control of air-breathing hypersonic vehicles subject to path and angle-of-attack constraints[J]. Acta Astronautica, 2022, 198: 606-616.
|
[5] |
HU X X, XU B, HU C H. Robust adaptive fuzzy control for HFV with parameter uncertainty and unmodeled dynamics[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11):8851-8860.
|
[6] |
WANG L, QI R Y, JIANG B. Adaptive actuator fault-tolerant control for non-minimum phase air-breathing hypersonic vehicle model[J]. ISA Transactions, 2022, 61(126): 47-64.
|
[7] |
魏启钊, 齐瑞云, 姜斌. 非最小相位高超声速飞行器自适应鲁棒容错控制[J]. 西北工业大学学报, 2021, 39(10):1-9.
|
|
WEI Q Z, QI R Y, JIANG B. Robust adaptive fault tolerant control for non-minimum phase hypersonic vehicles[J]. Journal of Northwestern Polytechnical University, 2021, 39(10): 1-9. (in Chinese)
|
[8] |
WANG Y X, CHAO T, WANG S Y, et al. Byrnes-Isidori-based dynamic sliding-mode control for nonminimum phase hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 23(95):105478.
|
[9] |
WANG Z, BAO W M, LI H F. Second-order dynamic sliding-mode control for nonminimum phase underactuated hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4):3105-3112.
|
[10] |
ZHANG X F, HU W J, WEI C S, et al. Nonlinear disturbance observer based adaptive super-twisting sliding mode control for generic hypersonic vehicles with coupled multisource disturbances[J]. European Journal of Control, 2021, 57:253-262.
|
[11] |
LIU J C, JIANG J, YU C J, et al. Disturbance observer-based fixed-time robust control for constrained air-breathing hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2022, 236(5):957-974.
|
[12] |
CHAO D K, QI R Y, JIANG B. Adaptive fault-tolerant attitude control for hypersonic reentry vehicle subject to complex uncertainties[J]. Journal of the Franklin Institute, 2022, 359(11):5458-5487.
|
[13] |
HU K Y, WANG X C, YANG C X. Hybrid adaptive dynamic inverse compensation for hypersonic vehicles with inertia uncertainty and disturbance[J]. Applied Sciences, 2022, 12(21):11032.
|
[14] |
唐建, 齐瑞云, 姜斌. 考虑约束的高超声速飞行器制导与控制一体化设计[J]. 宇航学报, 2022, 43(5):649-664.
|
|
TANG J, QI R Y, JIANG B. Integrated guidance and con-trol of hypersonic vehicle considering constraints[J]. Journal of Astronautics, 2022, 43(5):649-664. (in Chinese)
|
[15] |
LÜ X D, ZHANG G M, WANG G, et al. Numerical analyses and a nonlinear composite controller for a real-time ground aerodynamic heating simulation of a hypersonic flying object[J]. Mathematics, 2022, 10(16): 3022.
|
[16] |
CUI P, GAO C S, JING W X, et al. Fault-tolerant control of hypersonic vehicle using neural network and sliding mode[J]. International Journal of Aerospace Engineering, 2022(6):1637305.
|
[17] |
FIORENTINI L. Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D]. Columbus, OH, US: The Ohio State University, 2010.
|
[18] |
WANG G, XIA H W. Koopman-operator-based learning control of air-breathing hypersonic vehicles with nonminimum phase properties[J]. Engineering Applications of Artificial Intelligence, 2023, 126:107077.
|
[19] |
LEVAN A. Robust exact differentiation via sliding mode technique[J]. Automatica, 1998, 34(3):379-384.
|
[20] |
WANG Y, YU H T, LIU Y L. Speed-current single-loop control with overcurrent protection for PMSM based on time-varying nonlinear disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2021, 69(1):179-189.
|
[21] |
LI Y X. Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems[J]. Automatica, 2019, 61(106):117-123.
|
[22] |
LI Y G, JIANG Y C, SUN J S, et al. Adaptive finite-time direct fuzzy control for a nonlinear system with an unknown control gain based on an observer[J]. Information Sciences, 2022, 56(607):92-108.
|
[23] |
SUN J L, YI J Q, PU Z Q, et al. Fixed-time sliding mode disturbance observer-based non-smooth backstepping control for hypersonic vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(11):4377-4386.
|
[24] |
王成, 王旭刚. 基于滑模干扰观测器的高超声速飞行控制器设计[J]. 电光与控制, 2020, 27(6):90-94.
|
|
WANG C, WANG X G. Design of a controller for hy-personic vehicle based on sliding mode disturbance observer[J]. Electronics Optics & Control, 2020, 27(6):90-94. (in Chinese)
|
[25] |
徐长吉, 郭杰. 考虑执行故障的高超声速飞行器有限时间控制设计[J]. 空天技术, 2023, 456(6):76-87.
|
|
XU C J, GUO J. Finite time control of hypersonic aircraft considering execution faults[J]. Aerospace Technology, 2023, 456(6):76-87. (in Chinese)
|
[26] |
李慧洁, 蔡远利. 基于双幂次趋近律的滑模控制方法[J]. 控制与决策, 2016, 31(3):498-502.
|
|
LI H J, CAI Y L. Sliding mode control with double power reaching law[J]. Control and Decision, 2016, 31(3):498-502. (in Chinese)
|
[27] |
HUANG S T, JIANG J, LI O X. Sliding mode backstepping control for the ascent phase of near-space hypersonic vehicle based on a novel triple power reaching law[J]. Aerospace, 2022, 9(12):755.
|
[28] |
KHALI J. Robust stabilization of non-minimum phase switched nonlinear systems with uncertainty[J]. Journal of Systems Science and Complexity, 2020, 33(2):289-311.
|
[29] |
WEI Q Z, ZHOU Y W, FAN J, et al. An adaptive control method for non-minimum phase hypersonic vehicle[C]// Proceedings of the 2023 2nd Conference on Fully Actuated System Theory and Applications. Qingdao, China: IEEE, 2023:1073-1078.
|