欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (8): 2584-2593.doi: 10.12382/bgxb.2023.0394

• • 上一篇    下一篇

加权有向关联网络构建与表征的水中目标远距离检测

张红伟1,2, 王海燕1,3,*(), 闫永胜1,2, 申晓红1,2   

  1. 1 西北工业大学 航海学院, 陕西 西安 710072
    2 西北工业大学 海洋声学信息感知工业和信息化部重点实验室, 陕西 西安 710072
    3 陕西科技大学 电子信息与人工智能学院, 陕西 西安 710021
  • 收稿日期:2023-05-06 上线日期:2023-09-27
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(62031021); 国家自然科学基金项目(62271404)

Construction and Characterization of Weighted Directed Association Network for Remote Detection of Underwater Targets

ZHANG Hongwei1,2, WANG Haiyan1,3,*(), YAN Yongsheng1,2, SHEN Xiaohong1,2   

  1. 1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
    2 Key Laboratory of Ocean Acoustics and Sensing of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
    3 School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
  • Received:2023-05-06 Online:2023-09-27

摘要:

水中目标的远距离检测是海洋防御体系的关键技术之一,对国防及民用领域均具有十分重要的作用。然而,目前尚缺乏行之有效的水中目标远距离检测方法,特别是目标先验信息未知的情况下变的愈加困难。为解决这一问题,提出一种新的方法—加权有向关联网络。通过矢量声信号到加权有向关联网络的映射,将信号检测问题转化为网络拓扑的表征,并通过对网络拓扑的特性分析及特征提取,实现无目标先验信息下的水中目标远距离检测。并通过仿真与实测数据对所提出的方法进行验证。研究结果表明:与现有的窄带互谱检测、冒泡熵等方法相比,所提方法能够检测到更低信噪比的水中目标,实现了无需目标先验信息的水中目标远距离检测;该方法的应用具有一定的实际意义和应用前景,可以为海洋防御和民用领域的水下目标检测提供有效的技术支撑。

关键词: 水中目标, 远距离检测, 复杂网络, 矢量声信号, 加权有向关联网络, 无目标先验

Abstract:

Remote detection of underwater targets is a critical technology in ocean defense systems and has significant applications in both national defense and civilian domains. However, there is currently a lack of effective methods for long-range detection of underwater targets, especially without prior knowledge of the target. To address this issue, a new detection method based on weighted directed association network, is proposed, which represents the target signal detection problem as network topology by mapping the vector acoustic signal into the weighted directed association network. The long-range detection of underwater targets without prior knowledge is achieved through the analysis of network topology characteristics and the feature extraction. The proposed method is validated through the simulated and measured data. Compared with existing narrowband mutual spectrum detection and bubble entropy methods, the proposed method can detect the underwater targets with lower signal-to-noise ratios and achieve the long-range detection without prior knowledge. The proposed method has important practical significance and application prospects and can provide the effective technical support for underwater target detection in ocean defense and civilian fields.

Key words: underwater target, long-range detection, complex network, weighted directed correlation network, non-target prior, vector acoustic signal

中图分类号: