欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (6): 1877-1888.doi: 10.12382/bgxb.2023.0085

• • 上一篇    下一篇

一种结构不确定分析的改进多维平行六面体模型

乔心州*(), 张锦瑞, 方秀荣, 刘鹏   

  1. 西安科技大学 机械工程学院, 陕西 西安 710054
  • 收稿日期:2023-02-14 上线日期:2023-04-18
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(51775427)

An Improved Multidimensional Parallelepiped Model for Structural Uncertainty Analysis

QIAO Xinzhou*(), ZHANG Jinrui, FANG Xiurong, LIU Peng   

  1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
  • Received:2023-02-14 Online:2023-04-18

摘要:

多维平行六面体模型是一种能够同时考虑相关变量和独立变量的非概率凸集模型,更适用于工程结构中常见的多源不确定性问题。为更加有效合理地度量结构不确定性,提出一种改进多维平行六面体模型。通过定义区间变量的相关角和边缘区间,给出模型不确定域的显式表达式,进而给出依据实验样本点构建多维平行六面体模型的方法。3个算例分析结果表明,改进多维平行六面体模型能够较好地反映区间变量之间的相关性,是一种比传统多维平行六面体模型更为紧凑合理的模型。

关键词: 多维平行六面体模型, 非概率凸集模型, 变量相关性, 不确定域显式表达式

Abstract:

The multidimensional parallelepiped model is a non-probabilistic convex set model that can take into account dependent and independent variables simultaneously. Therefore, it is more suitable for the “multi-source uncertainty” problems in engineering structures. An improved multidimensional parallelepiped model is presented to more reasonably and efficiently quantify the structural uncertainties. An explicit expression for the uncertainty domain of the parallelepiped model is given by defining the correlation angle and marginal intervals of interval variables. A method is further formulated to construct a multidimensional parallelepiped model based on the experimental sample points. The analyzed results of three numerical examples show that the proposed model can better reflect the correlation of interval variables, and has a more compactness and rationality than the traditional multidimensional parallelepiped model.

Key words: multidimensional parallelepiped model, non-probabilistic convex set model, correlation of variables, explicit expression of uncertainty domain

中图分类号: