[1] |
YILDIRIM H C, ÖZÜPEK S. Structural assessment of a solid propellant rocket motor: effects of aging and damage[J]. Aerospace Science & Technology, 2011, 15(8):635-641.
|
[2] |
LÓPEZ R, ORTEGA D, SALAZAR A, et al. Structural integrity of aged hydroxyl-terminated polybutadiene solid rocket propellant[J]. Journal of Propulsion and Power, 2018, 34(1): 75-84.
|
[3] |
KIM S H, IM Y T. Experimental study of material behavior of AP-HTPB base composite solid propellant[J]. Journal of Mechanical Science and Technology, 2019, 33(7):3355-3361.
|
[4] |
LI H, XU J S, LIU J M, et al. Research on the influences of confining pressure and strain rate on NEPE propellant: Experimental assessment and constitutive model[J]. Defence Technology, 2021, 17(5):1764-1774.
doi: 10.1016/j.dt.2020.09.020
|
[5] |
TUNÇ B, ÖZÜPEK S. Constitutive modeling of solid propellants for three dimensional nonlinear finite element analysis[J]. Aerospace Science & Technology, 2017, 69:290-297.
|
[6] |
YUN K S, PARK J B, JUNG G D, et al. Viscoelastic constitutive modeling of solid propellant with damage[J]. International Journal of Solids & Structures, 2016, 80:118-127.
|
[7] |
XU F, ARAVAS N, SOFRONIS P. Constitutive modeling of solid propellant materials with evolving microstructural damage[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5):2050-2073.
|
[8] |
LEI M, WANG J J, CHENG J M, et al. A constitutive model of the solid propellants considering the interface strength and dewetting[J]. Composites Science and Technology, 2020, 185:107893.
|
[9] |
WUBULIAISAN M, WU Y Q, HOU X, et al. A viscoelastic constitutive model considering deformation and environmental-induced damages for solid propellants[J]. Aerospace Science & Technology, 2023, 132:108055.
|
[10] |
WUBULIAISAN M, WU Y Q, HOU X, et al. Multiscale viscoelastic constitutive modeling of solid propellants subjected to large deformation[J]. International Journal of Solids and Structures, 2023, 262: 112084.
|
[11] |
FRANCQUEVILLE F D, DIANI J, GILORMINI P, et al. Use of a micromechanical approach to understand the mechanical behavior of solid propellants[J]. Mechanics of Materials, 2021, 153:103656.
|
[12] |
MATOUS K, GEUBELLE P H. Finite element formulation for modeling particle debonding in reinforced elastomers subjected to finite deformations[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 196 (1/2/3) :620-366.
|
[13] |
INGLIS H M, GEUBELLE P H, MATOU K, et al. Cohesive modeling of dewetting in particulate composites: micromechanics vs. multiscale finite element analysis[J]. Mechanics of Materials, 2007, 39(6):580-595.
|
[14] |
侯宇菲, 许进升, 古勇军, 等. 基于内聚力法则的高能硝酸酯增塑聚醚推进剂开裂过程细观模型[J]. 兵工学报, 2020, 41(11): 2206-2215.
|
|
HOU Y F, XU J S, GU Y J, et al. Mesoscopic model of cracking process of NEPE propellant based on cohesive zone model[J]. Acta Armamentarii, 2020, 41(11): 2206-2215. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.11.007
|
[15] |
LI G C, WANG Y F, JIANG A M, et al. Micromechanical investigation of debonding processes in composite solid propellants[J]. Propellants Explosives Pyrotechnics, 2017, 43(7):642-649.
|
[16] |
BALINT F, GODA T J. Determination of the hyper-viscoelastic model parameters of open-cell polymer foams and rubber-like materials with high accuracy[J]. Materials & design, 2018, 156:596-608.
|
[17] |
GHOREISHY M. Determination of the parameters of the Prony series in hyper-viscoelastic material models using the finite element method[J]. Materials & Design, 2012, 35:791-797.
|
[18] |
KUMAR N, PATEL B P, RAO V V, et al. Hyperviscoelastic constitutive modelling of solid propellants with damage and compressibility[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(5): 461-471.
|
[19] |
SCHAPERY R A, PARK. A viscoelastic constitutive model for particulate composites with growing damage[J]. International Journal of Solids and Structures, 1997, 34(8):931-947.
|
[20] |
HINTERHOELZL R M, SCHAPERY R A. FEM implementation of a three-dimensional viscoelastic constitutive model for particulate composites with damage growth[J]. Mechanics of Time-Dependent Materials, 2004, 8(1):65-94.
|
[21] |
孟红磊, 鞠玉涛. 含损伤非线性粘弹性本构模型及数值仿真应用[J]. 固体火箭技术, 2012, 35(6):764-768.
|
|
MENG H L, JU Y T. Nonlinear viscoelastic equation with cumulative damage and its application on numerical simulation[J]. Journal of solid Rocket Technology, 2012, 35(6):764-768. (in Chinese)
|
[22] |
XU J S, CHEN X, WANG H, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures, 2014, 51(18):3209-3217.
|
[23] |
WANG Z J, QIANG H F, WANG T J, et al. A thermovisco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates[J]. Mechanics of Time-Dependent Materials, 2018, 22: 291-314
|
[24] |
KOSSA A, BEREZVAI S. Visco-hyperelastic characterization of polymeric foam materials[J]. Materials Today: Proceedings, 2016, 3(4): 1003-1008.
|
[25] |
LEE S, KNAUSS W G. A note on the determination of relaxation and creep data from ramp tests[J]. Mechanics of Time-Dependent Materials, 2000, 4(1): 1-7.
|
[26] |
乌布力艾散·麦麦提图尔荪, 吴艳青, 侯晓, 等. 细观结构参量对推进剂力学性能影响的数值研究[J]. 复合材料学报, 2022, 39(6): 2949-2961.
|
|
WUBULIAISAN M, WU Y Q, HOU X, et al. Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2949-2961. (in Chinese)
|
[27] |
HOU Y F, XU J S, ZHOU C S, et al. Microstructural simulations of debonding, nucleation, and crack propagation in an HMX-MDB propellant[J]. Materials & Design, 2021, 207: 109854.
|
[28] |
封涛. 基于细观模型的复合固体推进剂损伤数值模拟[D]. 南京: 南京理工大学, 2018.
|
|
FENG T. Numerical simulation of meso-mechanics damage in composite solid propellant based on mesoscopic model[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese)
|
[29] |
PRAKASH C, GUNDUZ I E, OSKAY C, et al. Effect of interface chemistry and strain rate on particle-matrix delamination in an energetic material[J]. Engineering Fracture Mechanics, 2018, 191: 46-64.
|
[30] |
WUBULIAISAN M, WU Y Q, HOU X, et al. Viscoelastic debonding criterion-based interface for modeling the mechanical behavior of solid propellants subjected to large deformation[J]. European Journal of Mechanics A/Solids, 2023, 98: 104873.
|
[31] |
AMIN A, ALAM M S, OKUI Y. An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification[J]. Mechanics of materials, 2002, 34(2): 75-95.
|
[32] |
LI T P, XU J S, HAN J L, et al. Effect of microstructure on micro-mechanical properties of composite solid propellant[J]. Micromachines, 2021, 12(11): 1378.
|
[33] |
LEI M, HAMEL C M, CHEN K, et al. Thermomechanical behaviors of polyether ether ketone (PEEK) with stretch-induced anisotropy[J]. Journal of the Mechanics and Physics of Solids, 2021, 148: 104271.
|
[34] |
LEONARD M, WANG N, LOPEZ P O, et al. The nonlinear elastic response of filled elastomers: experiments vs. theory for the basic case of particulate fillers of micrometer size[J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103781.
|
[35] |
曹蓉, 王永茂, 彭松, 等. 含CL-20/HMX的GAP高能推进剂老化特性[J]. 固体火箭技术, 2018, 41(2): 203-208.
|
|
CAO R, WANG Y M, PENG S, et al. Aging properties for GAP high-energy propellant containing CL-20/HMX[J]. Journal of Solid Rocket Technology, 2018, 41(2):203-208. (in Chinese)
|
[36] |
杜美娜. 高能固体推进剂组分的界面性质研究[D]. 北京: 北京理工大学, 2008.
|
|
DU M N. Study on the interface properties of high energy propellant components[D]. Beijing: Beijing Institute of Technology, 2008. (in Chinese)
|