| [1] | LEE J H S. The detonation phenomenon[M]. Cambridge, MA, US: Cambridge University Press, 2008. | 
																													
																						| [2] | SHEPHERD J E, PINTGEN F, AUSTIN J M, et al.  The structure of the detonation front in gases[C]∥Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit.  Reno,NV, US:AIAA, 2002:1-13. | 
																													
																						| [3] | DOU H S, KHOO B C. Effect of initial disturbance on the detonation front structure of a narrow duct[J]. Shock Waves, 2010, 20(2):163-173.  doi: 10.1007/s00193-009-0240-8    
																																					URL
 | 
																													
																						| [4] | CHO D R, WON S H, EDWARD J R, et al.  Numerical study of three-dimensional detonation wave dynamics in a circular tube[J]. Proceedings of the Combustion Institute, 2013, 34:1929-1937.  doi: 10.1016/j.proci.2012.08.003    
																																					URL
 | 
																													
																						| [5] | TSUBOI N, DAIMON Y, HAYASHI A K. Three-dimensional numerical simulation of detonations in coaxial tubes[J]. Shock Waves, 2008, 18(5):379-392.  doi: 10.1007/s00193-008-0152-z    
																																					URL
 | 
																													
																						| [6] | CAMPBELL C, WOODHEAD DW. The ignition of gases by an explosive wave[J]. Journal of the Chemical Society, 1927, 130:1572-1578. | 
																													
																						| [7] | SCHOTT G L. Observation of the structure of spinning detonations[J]. Physics of Fluids, 1965, 8:55-61. | 
																													
																						| [8] | ZHANG F, GRÖNIG H. Spin detonation in reactive particles-oxidizing gas flow[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(8):1983-1990.  doi: 10.1063/1.857930    
																																					URL
 | 
																													
																						| [9] | ISHII K, GRONIG H. Behavior of detonation waves at low pressures[J]. Shock Waves, 1997, 8(1):55-61.  doi: 10.1007/s001930050098    
																																					URL
 | 
																													
																						| [10] | KASIMOV A R, STEWART D S. Spinning instability of gaseous detonations[J]. Journal of Fluid Mechanics, 2002, 466:179-203.  doi: 10.1017/S0022112002001192    
																																					URL
 | 
																													
																						| [11] | HANANA M, LEFEBVRE M H. Pressure profiles in detonation cells with rectangular and diagonal structures[J]. Shock Waves, 2001, 11(2):77-88.  doi: 10.1007/PL00004068    
																																					URL
 | 
																													
																						| [12] | TSUBOI N, ASAHARA M, ETO K, et al.  Numerical simulation of spinning detonation in square tube[J]. Shock Waves, 2008, 18(4):329-344.  doi: 10.1007/s00193-008-0153-y    
																																					URL
 | 
																													
																						| [13] | EMAMI S D, KASMANI R M, NASERZADEH Z, et al.  Effectiveness of diluent gases on hydrogen flame propagation in tee pipe (part II)-influence of tee junction position[J]. Fuel, 2017, 190:260-267.  doi: 10.1016/j.fuel.2016.11.018    
																																					URL
 | 
																													
																						| [14] | ZHAO H J, LIU K Q, LIN M, et al.  Propagation characteristics of unstable detonation waves in round tube with annular perturbation[J]. International Journal of Hydrogen Energy, 2023, 48(24):9127-9138.  doi: 10.1016/j.ijhydene.2022.12.044    
																																					URL
 | 
																													
																						| [15] | 武郁文, 褚驰, 翁春生, 等. 孔板扰动对爆轰波胞格结构特性影响的实验研究[J]. 爆炸与冲击, 2019, 39(11):15-23. | 
																													
																						|  | WU Y W, CHU C, WENG C S, et al.  Experimental study on the effect of orifice plate disturbance on the cellular structure of detonation wave[J]. Explosion and Shock Waves, 2019, 39(11):15-23. (in Chinese) | 
																													
																						| [16] | 严屹然, 张英华, 赵焕娟, 等. 螺旋爆轰内部胞格结构实验探索[J]. 推进技术, 2021, 42(3):593-600. | 
																													
																						|  | YAN Y R, ZHANG Y H, ZHAO H J, et al.  Experimental research on spinning detonation structure[J]. Journal of Propulsion Technology, 2021, 42(3):593-600. (in Chinese) | 
																													
																						| [17] | ACHASOV O V, PENYAZKOV O G. Dynamics study of detonation-wave cellular structure 1. Statistical properties of detonation wave front[J]. Shock Waves, 2002, 11(4):297-308.  doi: 10.1007/s001930100106    
																																					URL
 | 
																													
																						| [18] | KITANO S, FUKAO M, SUSA A, et al.  Spinning detonation and velocity deficit in small diameter tubes[J]. Proceedings of the Combustion Institute, 2009, 32:2355-2362.  doi: 10.1016/j.proci.2008.06.119    
																																					URL
 | 
																													
																						| [19] | WU Y W, LEE J H S. Stability of spinning detonation waves[J]. Combustion and Flame, 2015, 162(6):2660-2669.  doi: 10.1016/j.combustflame.2015.03.021    
																																					URL
 | 
																													
																						| [20] | DUFF R E. Investigation of spinning detonation and detonation stability[J]. Physics of Fluids, 1961, 4(11):1427-1433. | 
																													
																						| [21] | 赵焕娟, 严屹然, 张英华. 2H2+O2+3Ar预混气螺旋爆轰内部结构的实验探索[J]. 工程热物理学报, 2018, 39(4): 922-929. | 
																													
																						|  | ZHAO H J, YAN Y R, ZHANG Y H. Experimental observation of spiral detonation inner structure[J]. Journal of Engineering Thermophysics, 2018, 39(4):922-929. (in Chinese) | 
																													
																						| [22] | HUANG Z W, LEFEBVRE M H, VAN T P. Experiments on spinning detonations with detailed analysis of the shock structure[J]. Shock Waves, 2000, 10:119-125.  doi: 10.1007/s001930050185    
																																					URL
 | 
																													
																						| [23] | SUGIYAMA Y, MATSUO A. Numerical study of acoustic coupling in spinning detonation propagating in a circular tube[J]. Combustion and Flame, 2013, 160(11):2457-2470.  doi: 10.1016/j.combustflame.2013.06.003    
																																					URL
 | 
																													
																						| [24] | SUGIYAMA Y, MATSUO A. Numerical analysis on acoustic coupling of spinning detonation in a square tube[J]. Journal of Thermal Science and Technology, 2016, 11(1):10-17. | 
																													
																						| [25] | LI J, NING J, LEE J H S. Mach reflection of a ZND detonation wave[J]. Shock Waves, 2015, 25(3):293-304.  doi: 10.1007/s00193-015-0562-7    
																																					URL
 | 
																													
																						| [26] | LI J, LEE J H S. Numerical simulation of mach reflection of cellular detonations[J]. Shock Waves, 2016, 26(5):673-682.  doi: 10.1007/s00193-016-0668-6    
																																					URL
 | 
																													
																						| [27] | LI J, REN H L, WANG X H, et al.  Length scale effect on Mach reflection of cellular detonations[J]. Combustion and Flame, 2018, 189:378-392.  doi: 10.1016/j.combustflame.2017.11.002    
																																					URL
 | 
																													
																						| [28] | ZHAO H, LEE J H S, LEE J, et al.  Quantitative comparison of cellular patterns of stable and unstable mixtures[J]. Shock Waves, 2016, 26(5):621-633.  doi: 10.1007/s00193-016-0673-9    
																																					URL
 | 
																													
																						| [29] | ZHANG B, LIU H, LI Y C. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures[J]. Fuel, 2019, 253:305-310.  doi: 10.1016/j.fuel.2019.05.006    
																																					URL
 | 
																													
																						| [30] | XIAO Q, RADULESCU M I. Role of instability on the limits of laterally strained detonation waves[J]. Combustion and Flame, 2020, 220:410-428.  doi: 10.1016/j.combustflame.2020.06.040    
																																					URL
 |