欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2024, Vol. 45 ›› Issue (3): 855-863.doi: 10.12382/bgxb.2022.0639

• • 上一篇    下一篇

基于生成对抗网络的弹载图像盲去模糊算法

苏迪1,2, 王少博1, 张成1,*(), 陈志升1, 刘超越3   

  1. 1 北京理工大学 宇航学院, 北京 100081
    2 杭州极弱磁场国家重大科技基础设施研究院, 浙江 杭州 310051
    3 中国运载火箭技术研究院, 北京 100076
  • 收稿日期:2022-07-14 上线日期:2022-07-25
  • 通讯作者:
    * 通信作者邮箱:

Projectile-borne Image Deblurring Algorithm Based on Generative Adversarial Networks

SU Di1,2, WANG Shaobo1, ZHANG Cheng1,*(), CHEN Zhisheng1, LIU Chaoyue3   

  1. 1 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
    2 National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, Zhejiang, China
    3 China Academy of Launch Vehicle Technology, Beijing 100076, China
  • Received:2022-07-14 Online:2022-07-25

摘要:

低速旋转弹导引头具有抖动和旋转等运动特性,使得其采集图像存在严重的模糊特点,直接影响了后续图像算法对目标识别的准确性,进而影响制导精度。针对以上问题,提出一种基于生成对抗神经网络的盲去模糊算法。利用复合运动模糊仿真系统,实现了对弹载图像抖动和旋转等运动模糊的模拟,并制作弹载图像模糊数据集。使用卷积神经网络作为生成器和判别器的基本架构,并设计多个损失函数共同优化网络,以减小图像在修复复原过程中的噪声并保持图像平滑。实现了弹载图像的去模糊,并获得更加稳定、清晰的图像序列。实验结果表明,该算法的去模糊效果在峰值信噪比、结构相似性指标上比现阶段其他算法更好,更符合人类视觉的主观感受,具有工程应用价值。

关键词: 低速旋转弹, 弹载图像, 生成对抗网络, 盲去模糊

Abstract:

The low-speed roll missile seeker has a serious blurring feature in image collection due to its motion characteristics such as dithering and rotating,which directly affects the accuracy of subsequent image algorithms for target recognition,thus affecting the guidance accuracy.To solve the above problems,a blind deblurring algorithm based on a generative adversarial network is proposed. The motion blurring simulation system is used to simulate the motion blurring such as jitter and rotation of missile-borne image,and a fuzzy dataset of missile-borne image is made.The convolution neural network is used as the basic architecture of generator and discriminator,and several loss functions are designed to optimize the network together to reduce the noise and keep the image smooth during image restoration.The de-blurring of missile-borne image is achieved,and a more stable and clear image sequence is obtained.The experimental results show that the proposed algorithm performs better in peak signal-to-noise ratio and structural similarity than other algorithms and achieves state-of-the-art performance,and accords with the subjective perception of human vision.It has practical application value.

Key words: low-speed rotational missile, missile-borne image, generative adversarial network, blind image-debluring

中图分类号: