[1] WANG T Y, HAN Q K, CHU F L, et al. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review[J]. Mechanical Systems and Signal Processing, 2019, 126: 662-685. [2] 吴春志, 冯辅周, 吴守军, 等. 一种有效的不均衡样本生成方法及其在行星变速箱故障诊断中的应用[J]. 兵工学报, 2019, 40(7): 1349-1357. WU C Z, FENG F Z, WU S J, et al. An effective method for imbalanced sample generation and its application in fault diagnosis of planetary gearbox[J]. Acta Armamentarii, 2019, 40(7): 1349-1357. (in Chinese) [3] WANG T Y, CHU F L, FENG Z P. Meshing frequency modulation (MFM) index-based kurtogram for planet bearing fault detection[J]. Journal of Sound and Vibration, 2018, 432: 437-453. [4] LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834. [5] QIAN Y N, YAN R Q, GAO R X. A multi-time scale approach to remaining useful life prediction in rolling bearing[J]. Mechanical Systems and Signal Processing, 2017, 83: 549-567. [6] AHMAD W, KHAN S A, KIM J M. A hybrid prognostics technique for rolling element bearings using adaptive predictive models[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1577-1584. [7] LIU X J, SONG P, YANG C, et al. Prognostics and health management of bearings based on logarithmic linear recursive least- squares and recursive maximum likelihood estimation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1549-1558. [8] HU Y G, LI H, SHI P P, et al. A prediction method for the real-time remaining useful life of wind turbine bearings based on the Wiener process[J]. Renewable Energy, 2018, 127: 452-460. [9] BOUMAHDI M, RECHAK S, HANINI S. Analysis and prediction of defect size and remaining useful life of thrust ball bearings:modelling and experiment procedures[J]. Arabian Journal for Science and Engineering, 2017, 42(11): 4535-4546. [10] RAI A, UPADHYAY S H.The use of MD-CUMSUM and NARX neural network for anticipating the remaining useful life of bearings[J]. Measurement, 2017, 111: 397-410. [11] 于震梁, 孙志礼, 曹汝男, 等. 基于支持向量机和卡尔曼滤波的机械零件剩余寿命预测模型研究[J]. 兵工学报, 2018, 39(5): 991-997. YU Z L, SUN Z L, CAO R N, et al. Research on remaining useful life predictive model of machine parts based on SVM and Kalman filter[J]. Acta Armamentarii, 2018, 39(5): 991-997.(in Chinese) [12] AYE S A, HEYNS P S.An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission[J]. Mechanical Systems and Signal Processing, 2017, 84(Part A): 485-498. [13] RUMELHART D E, HINTON G E, WILLIAMS R J.Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. [14] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]∥Proceedings of Deep Learning and Representation Learning Workshop at NIPS'2014. Montreal, Canada: [s.n.], 2014. [15] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: [s.n.],2014: 2672-2680. [16] MIRZA M, OSINDERO S. Conditional generative adversarial nets: arXiv1411.1784[R/OL]. Ithaca, NY, US: Cornell University, 2014 (2014-11-06)[2019-12-05]. https:∥arxiv.org/abs/1411.1784. [17] SUTTON R S, BARTO A G, Reinforcement learning: An introduction[M]. Cambridge, MA, US: MIT Press, 1998. [18] LI Y, PAN Q, WANG S H,et al. A generative model for category text generation[J]. Information Sciences, 2018, 450: 301-315. [19] BANERJEE B, KRAEMER L, Reinforcement learning with action discovery[C]∥Proceedings of Adaptive and Learning Agents Workshop. Toronto, Canada: International Foundation for Autonomous Agents and Multiagent Systems, 2010: 30-37. [20] BANERJEE B, KRAEMER L. Action discovery for single and multi-agent reinforcement learning[J]. Advances in Complex Systems, 2011, 14(2): 279-305. [21] KHASHEI M, HAMADANI A Z, BIJARI M. A novel hybrid classification model of artificial neural networks and multiple linear regression models[J]. Expert Systems with Applications, 2012, 39(3): 2606-2620. [22] 王健, 孙志礼, 于震梁, 等. 基于支持向量机的机械零件剩余寿命区间估计[J]. 东北大学学报(自然科学版), 2016, 37(7): 974-978. WANG J, SUN Z L, YU Z L, et al. Remaining useful life interval estimation for machine parts based on SVM and Kalman filter[J]. Journal of Northeastern University (Natural Science), 2016, 37(7): 974-978.(in Chinese)
|