[1] WORTHINGTON A M, COLE R S. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London . Series A, Containing Papers of a Mathematical or Physical Character, 1900, 194:175-199. [2] RICHARDSON E G. The impact of a solid on a liquid surface[J]. Proceedings of the Physical Society, 1948, 61(4):352-367. [3] MAY A, WOODHULL J C. The virtual mass of a sphere entering water vertically[J]. Journal of Applied Physics, 1950, 21(12):1285-1289. [4] TRUSCOTT T T, TECHET A H. Water entry of spinning spheres[J]. Journal of Fluid Mechanics, 2009, 625:135-165. [5] 陈先富. 弹丸入水空穴的试验研究[J]. 爆炸与冲击, 1985, 5(4): 70-73. CHEN X F. Experimental studies on the cavitation phenomena as a pellet entering water[J]. Explosion and Shock Waves, 1985, 5(4): 70-73. (in Chinese) [6] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究[J]. 爆炸与冲击, 2011, 31(6):579-584. ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6):579-584. (in Chinese) [7] 杨衡, 张阿漫, 龚小超, 等. 不同头型弹体低速入水空泡试验研究[J]. 哈尔滨工程大学学报, 2014, 35(9):1060-1066. YANG H, ZHANG A M, GONG X C, et al. Experimental study of the cavity of low speed water entry of different head shape projectiles[J]. Journal of Harbin Engineering University, 2014, 35(9): 1060-1066. (in Chinese) [8] 路丽睿, 魏英杰, 王聪, 等. 不同头型射弹低速倾斜入水空泡及弹道特性试验研究[J]. 兵工学报, 2018, 39(7):1364-1371. LU L R, WEI Y J, WANG C, et al. Experimental investigation into the cavity and ballistic characteristics of low-speed oblique water entry of revolution body[J]. Acta Armamentarii, 2018, 39(7): 1364-1371. (in Chinese) [9] 王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究[J]. 兵工学报, 2014, 35(12):1998-2002. WANG Y, YUAN X L, L C. Experimental research on curved trajectory of high-speed water-entry missile[J]. Acta Armamentarii, 2014, 35(12):1998-2002. (in Chinese)
[10] 施红辉, 胡青青, 陈波, 等. 钝体倾斜和垂直冲击入水时引起的超空泡流动特性实验研究[J]. 爆炸与冲击, 2015, 35(5): 617-624. SHI H H, HU Q Q, CHEN B, et al. Experimental study of supercavitating flows induced by oblique and vertical water entry of blunt bodies[J]. Explosion and Shock Waves, 2015, 35(5):617-624. (in Chinese) [11] 蒋运华, 徐胜利, 周杰. 圆盘空化器航行体入水空泡实验研究[J]. 工程力学, 2017, 34(3):241-246. JIANG Y H, XU S L, ZHOU J. Water entry experiment of a cylindrical vehicle with disc cavitator[J]. Engineering Mechanics, 2017, 34(3):241-246. (in Chinese) [12] JIANG Y H, BAI T, GAO Y, et al. Water entry of a constraint posture body under different entry angles and ventilation rates[J]. Ocean Engineering, 2018, 153:53-59. [13] 周杰, 徐胜利, 彭杰. 弹丸高速斜侵彻入水流场显示的初步研究[J]. 高压物理学报, 2018, 32(1):132-139. ZHOU J, XU S L, PENG J. Water entry flow-field visualization of the oblique penetration of a high-speed projectile[J]. Chinese Journal of High Pressure Physics, 2018, 32(1):132-139. (in Chinese) [14] 陈诚, 袁绪龙, 党建军, 等. 超空泡航行器20°角倾斜入水冲击载荷特性试验研究[J]. 兵工学报,2018, 39(6):1159-1164. CHEN C, YUAN X L, DANG J J, et al. Experimental investigation into impact load during oblique water-entry of a supercavitating vehicle at 20°[J]. Acta Armamentarii, 2018, 39(6):1159-1164. (in Chinese) [15] CHEN C, YUAN X L, LIU X Y, et al. Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1):482-494. [16] CHEN T, HUANG W, ZHANG W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles[J]. Ocean Engineering, 2019, 175:16-24. [17] TRUSCOTT T T, BEAL D N, TECHET A H. Shallow-angle water entry of ballistic projectiles[C]∥Proceedings of the 7th International Symposium on Cavitation. Ann Arbor, MI, US: [s.n.], 2009: 1-14. [18] 樊国勇. 浅海水声信道均衡算法研究[D]. 广州: 华南理工大学, 2013: 14-15. FAN G Y. The research on equalization algorithm for shallow water acoustic channels[D]. Guangzhou: South China University of Technology, 2013: 14-15. (in Chinese)
第41卷 第2期2020 年2月兵工学报ACTA ARMAMENTARIIVol.41No.2Feb.2020
|