欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250431-.doi: 10.12382/bgxb.2025.0431

• • 上一篇    下一篇

自然破片战斗部爆炸事故风险评估方法

辛大钧, 薛琨*()   

  1. 北京理工大学 爆炸科学与安全防护全国重点实验室, 北京 100081

Research on Risk Assessment Methods for Explosion Accidents of Natural Fragmentation Warheads

XIN Dajun, XUE Kun*()   

  1. National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
  • Received:2025-05-31 Online:2025-11-05

摘要:

针对自然破片战斗部爆炸事故风险评估中的关键问题,提出了一套完整的参数化综合分析方法。通过系统整合破片形成有限元模拟、破片远距离精确弹道计算、三维命中概率评估和人体损伤量化等关键环节,建立了多尺度耦合的风险评估体系。在破片运动学建模方面,开发了基于人工神经网络的气动力代理模型,通过引入破片球形度参数和马赫数双变量,大大提升了自然破片随机翻滚状态轨迹计算的精度;在危害效应评估方面,创新性提出三维饼状靶板模型,结合人体几何参数,将弹道轨迹及人员的相对位置引入破片命中人员的概率计算中;在风险量化方面,构建了融合简明损伤定级标准(Abbreviated Injury Scale,AIS)中损伤等级与破片动能分布的多层级概率评估框架。以155mm弹体为典型案例验证表明:该方法不仅可以通过环形均匀安全距离来描述破片危险性,还可以生成破片危险概率的二维空间分布。研究实现了破片初始随机性、运动复杂性与损伤渐进性的全过程量化表征,为弹药储运安全距离动态划定、靶场安全区优化设计以及工业爆炸防护提供了新的分析工具和决策支持。

关键词: 破片危险性, 终点效应, 风险评估, 安全距离

Abstract:

This study addresses the critical challenges in risk assessment of natural fragmentation warhead explosions by proposing a comprehensive parametric analytical methodology. Through systematic integration of key components including stochastic fragment generation, precise trajectory calculation, three-dimensionalh probability evaluation, and quantitative human damage assessment, we have established a multi-scale coupled risk evaluation system. In terms of fragment kinematics modeling, we developed an aerodynamic surrogate model based on artificial neural networks. By introducing fragment sphericity parameters and Mach number as dual variables, the model significantly improves the trajectory calculation accuracy for naturally fragmenting projectiles under random tumbling conditions. For hazard effect evaluation, we innovatively proposed a three-dimensional pie-shaped target model. By incorporating detailed human geometric parameters and considering the relative position between fragment trajectories and human targets, the model enables more accurate calculation of fragment hit probability on personnel. Regarding risk quantification, we constructed a multi-level probabilistic assessment framework that integrates AIS injury scales with fragment kinetic energy distribution. Validation using 155mm projectiles demonstrates that this method can not only describe fragment hazards through uniform annular safety distances but also generate two-dimensional spatial distributions of fragment hazard probability. The research achieves quantitative characterization of the entire process encompassing initial stochasticity, motion complexity, and progressive damage effects of fragments. It provides new analytical tools and decision support for dynamic safety distance determination in ammunition storage and transportation, optimized safety zoning design for firing ranges, and industrial explosion protection.

Key words: fragment hazard, terminal effects, risk assessment, safety distance