[1] |
王沫, 金绍华, 王美娜, 等. 海底底质测量数据处理技术体系研究[J]. 海洋测绘, 2021, 41(1): 56-60.
|
|
WANG M, JIN S H, WANG M N, et al. Research on technical system of seabed sedimen surveying data processing[J]. Hydroaphic Surveying and Charting, 2021, 41(1): 56-60. (in Chinese)
|
[2] |
赵玉新, 赵廷. 海底声呐图像智能底质分类技术研究综述[J]. 智能系统学报, 2020, 15(3): 587-600.
|
|
ZHAO Y X, ZHAO T. Survey of the intelligent seabed sediment classification technology based on sonar images[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 587-600. (in Chinese)
|
[3] |
李通旭, 张效民, 韩冲, 等. 掩埋水雷在不同海底和掩埋深度的声衰减建模[J]. 兵工学报, 2014, 35(3): 428-432.
doi: 10.3969/j.issn.1000-1093.2014.03.021
|
|
LI T X, ZHANG X M, HAN C, et al, Acoustic attenuation modeling of buried mines in different sediments and depths[J]. Acta Armamentarii, 2014, 35(3): 428-432. (in Chinese)
|
[4] |
范超, 王鼎, 杨宾, 等. 信号传播速度未知下水下多基地声纳定位算法[J]. 兵工学报, 2022, 43(3): 637-652.
doi: 10.12382/bgxb.2021.0134
|
|
FAN C, WANG D, YANG B, et al. An algorithm for underwater target localization of multistatic sonar system with unknown signal propagation speed[J]. Acta Armamentarii, 2022, 43(3): 637-652. (in Chinese)
doi: 10.12382/bgxb.2021.0134
|
[5] |
李官保, 王景强, 孟祥梅, 等. 中国近海主要表层沉积物类型的原位声学特性[J]. 哈尔滨工程大学学报, 2024, 45(1): 189-197.
|
|
LI G B, WANG J Q, MENG X M, et al. In-situ acoustic properties of the main types of sediment in the offshore areas of China[J]. Journal of Harbin Engineering University, 2024, 45(1): 189-197. (in Chinese)
|
[6] |
MISIUK B, BROWN C. Benthic habitat mapping: a review of three decades of mapping biological patterns on the seafloor[J]. Estuarine, Coastal and Shelf Science, 2024, 296: 108599.
|
[7] |
SMITH L, STARK N, JABER R. Relating side scan sonar backscatter data to geotechnical properties for the investigation of surficial seabed sediments[J]. Geo-Marine Letters, 2023, 43(2): 9-18.
|
[8] |
倪海燕, 王文博, 任群言, 等. 多波束声呐海底底质半监督学习分类方法[J]. 声学技术, 2023, 42(4): 524-532.
|
|
NI H Y, WANG W B, REN Q Y, et al. Semi-supervised learning methods for seafloor sediment classification using multi-beam sonar[J]. Technical Acoustics, 2023, 42(4): 524-532. (in Chinese)
|
[9] |
ZHANG Q Y, ZHAO J H, LI S B, et al. Seabed sediment classification Using Spatial Statistical Characteristics[J]. Journal of Marine Science and Engineering, 2022, 10(5): 691.
|
[10] |
SUMMERS G, AARON L, ANDREW J W. Multi resolution appraisal of Cork Harbour estuary: an object based image analysis approach[J]. Geomorphology, 2023,439: 108851.
|
[11] |
DIESING M, MITCHELL P, STEPHENS D. Image-based seabed classification: what can we learn from terrestrial remote sensing?[J]. ICES Journal of Marine Science, 2016, 73(10): 2425-2441.
|
[12] |
MISIUK B, TAN Y L, LI M Z, et al. Multivariate mapping of seabed grain size parameters in the Bay of Fundy using convolutional neural networks[J]. Marine Geology, 2024, 472: 107299.
|
[13] |
KAVZOGLU T, TONBUL H. An experimental comparison of multi-resolution segmentation, SLIC and K-means clustering for object-based classification of VHR imagery[J]. International Journal of Remote Sensing, 2018, 39(18): 6020-6036.
|
[14] |
JANOWSKI L, WROBLEWSKI R, DWORNICZAK J, et al. Offshore benthic habitat mapping based on object-based image analysis and geomorphometric approach. a case study from the Slupsk Bank, Southern Baltic Sea[J]. Science of The Total Environment, 2021, 801: 149712.
|
[15] |
IERODIACONOU D, SCHIMEL A C, KENNEDY D, et al. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters[J]. Marine Geophysical Research, 2018, 39: 271-288.
|
[16] |
SUMMERS G, LIM A, WHELLER A J. A scalable, supervised classification of seabed sediment waves using an object-based image analysis approach[J]. Remote Sensing, 2021, 13(12): 2317.
|
[17] |
GRIPPA T, LENNERT M, BEAUMONT B, et al. An open-source semi-automated processing chain for urban object-based classification[J]. Remote Sensing, 2017, 9(4): 358.
|
[18] |
MASETTI G, MAYER L A, WARD L G. A bathymetry-and reflectivity-based approach for seafloor segmentation[J]. Geosciences, 2018, 8(1): 14.
|
[19] |
ISMAIL K, HUVENNE V, ROBERT K. Quantifying spatial heterogeneity in submarine canyons[J]. Progress in Oceanography, 2018, 169: 181-198.
|
[20] |
KUCHARCZYK M, HAY G J, GHAFFARIAN S, et al. Geographic object-based image analysis: a primer and future directions[J]. Remote Sensing, 2020, 12(12): 2012.
|
[21] |
ANDERS N S, SEIJMONSBERGEN A C, BOUTEN W. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping[J]. Remote Sensing of Environment, 2011, 115(12): 2976-2985.
|
[22] |
SHANG X D, DONG L, ZHAO J H. Optimal scale determination for object-based backscatter image analysis in seafloor substrate classification based on classification uncertainty[J]. IEEE Geoscience and Remote Sensing Letters, 2024,21: 1501005.
|
[23] |
杨涛涛, 吕福亮, 鲁银涛, 等. 南海西沙海域多种海底地貌特征及成因[J]. 海相油气地质, 2021, 26(4):307-318.
|
|
YANG T T, LÜ F L, LU Y T, et al. Characteristics and genesis of various seafloor topography in Xisha sea area,South China Sea[J]. Marine Origin Petroleum Geology, 2021, 26(4): 307-318. (in Chinese)
|
[24] |
LI S B, SHANG X D, WANG S Q, et al. A geometric and radiometric-invariant matching method for SSS and MBES data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-13.
|