欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240599-.doi: 10.12382/bgxb.2024.0599

• • 上一篇    

空间适应性分割尺度下的海底底质声学图像分类

尚晓东1, 董理1,*(), 赵建虎2, 张志强1   

  1. 1 海军工程大学, 湖北 武汉 430033
    2 武汉大学 测绘学院, 湖北 武汉 430079
  • 收稿日期:2024-07-18 上线日期:2025-05-07
  • 通讯作者:
    * 邮箱:
  • 基金资助:
    国家自然科学基金项目(42176186)

Classification of Seafloor Sediments Using Acoustic Image Based on Spatially Adaptive Segmentation Scales

SHANG Xiaodong1, DONG Li1,*(), ZHAO Jianhu2, ZHANG Zhiqiang1   

  1. 1 Naval University of Engineering, Wuhan 430033, Hubei, China
    2 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, Hubei, China
  • Received:2024-07-18 Online:2025-05-07

摘要:

针对目前面向对象的海底声学图像分类中分割尺度的确定存在经验性和受人为因素影响显著等问题,提出一种以混淆指数作为客观指标的空间适应性分割尺度确定方法。通过给定一组分割尺度,计算得到对应的分割对象的回波强度均值和标准差。采用非监督聚类K-means算法,计算不同分割尺度下分类结果的混淆指数,选择最小混淆指数对应的分割尺度作为提取海底图像特征的最优尺度。基于最优分割尺度提取海底图像特征,联合采样数据建立监督分类模型,预测整个测量区域的底质分布结果。研究结果表明,采用空间适应性分割尺度,能够显著提高底质分类的精度。实验采用交叉检验,验证了新方法的有效性,而且针对回波强度特征较为一致的底质,在实验中通过引入地形特征进一步提高了分类精度。

关键词: 海底底质分类, 空间适应性, 分割尺度, 声学图像, 混淆指数

Abstract:

At present, the determination of segmentation scale in the object-oriented seafloor acoustic image classification is empirical and significantly influenced by human factors. A spatially adaptive segmentation scale determination method using the confusion index as an objective index is proposed. The mean value and standard deviation of echo intensity corresponding to the segmentation objects are calculated by giving a set of segmentation scales. The unsupervised K-means clustering algorithm is then adopted to calculate the confusion indexes pf classification results at different segmentation scales, and the segmentation scale corresponding to the minimum confusion index is selected as the optimal scale to extract the seafloor image features. Based on the seafloor image features extracted at the optimal scale, a supervised classification model is established by combining the sampled data to predict the distribution of sediments in the whole surveying area. Experimental results prove that the spatially adaptive segmentation scales can be used to improve the classification accuracy significantly. The effectiveness of the proposed method is verified by cross-check in the experiment. Moreover, for thesegments that are with the relatively consistent the echo intensity characteristics, the classification accuracy can be further improved by introducing the terrain features.

Key words: seafloor sediment classification, spatially adaptive, segmentation scale, acoustic image, confusion index

中图分类号: