[1] |
OGATA S, KITAGAWA H, HIROSAKI N, et al. Molecular dynamics simulation of shearing deformation process of silicon nitride single crystal[J]. Computational Materials Science, 2002, 23(1/2/3/4):146-154.
|
[2] |
YAO J M, WU Y H, SUN J, et al. Research on the metamorphic layer of silicon nitride ceramic under high temperature based on molecular dynamics[J]. The International Journal of Advanced Manufacturing Technology, 2020,109:1249-1260.
|
[3] |
HONG Y Q, ZHU Y, DU Y P, et al. Atomistic construction of silicon nitride ceramic fiber molecular model and investigation of its mechanical properties based on molecular dynamics simulations[J]. Materials, 2023, 16(18):6082.
|
[4] |
MATSUBARA H. Computer simulations for the design of microstructural developments in ceramics[J]. Computational Materials Science, 1999, 14(1/2/3/4):125-128.
|
[5] |
YU T, SHI H J. Effects of grain size distribution on the creep damage evolution of polycrystalline materials[J]. Journal of Physics D:Applied Physics, 2010, 43(16):165401.
|
[6] |
LI K S, CHENG L Y, XU Y, et al. A dual-scale modelling approach for creep-fatigue crack initiation life prediction of holed structure in a nickel-based superalloy[J]. International Journal of Fatigue, 2022,154:106522.
|
[7] |
YUAN S W, YANG Z C. Microstructure model and crack initiation for a SiC-reinforced Si3N4 ceramic with differently sized SiC particles[J]. Computational Materials Science, 2017,131:202-208.
|
[8] |
ZHANG K S, WU M S, FENG R. Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling[J]. International Journal of Plasticity, 2005, 21(4):801-834.
|
[9] |
司良英, 邓关宇, 吕程, 等. 基于Voronoi图的晶体塑性有限元多晶几何建模[J]. 材料与冶金学报, 2009, 8(3):193-197,216.
|
|
SI L Y, DENG G Y, LÜ C, et al. Finite element polycrystalline geometric modeling of crystal plasticity based on Voronoi diagram[J]. Journal of Materials and Metallurgy, 2009, 8(3):193-197,216. (in Chinese)
|
[10] |
KAMBALE K R, MAHAJAN A, BUTEE S P. Effect of grain size on the properties of ceramics[J]. Metal Powder Report, 2019, 74(3):130-136.
|
[11] |
PENG H R, JIAN Z Y, LIU F. Review of thermo-kinetic correlation during grain growth in nanocrystalline materials[J]. International Journal of Ceramic Engineering & Science, 2020, 2(2):49-65.
|
[12] |
BHATTACHARYA A, SHEN Y F, HEFFERAN C M, et al. Grain boundary velocity and curvature are not correlated in Ni polycrystals[J]. Science, 2021, 374(6564):89-193.
|
[13] |
HAMDI H, ABEDI H R, ZHANG Y. A review study on thermal stability of high entropy alloys:normal/abnormal resistance of grain growth[J]. Journal of Alloys and Compounds, 2023,960:170826.
|
[14] |
FAN D, CHEN L Q. Computer simulation of grain growth using a continuum field model[J]. Acta Materialia, 1997, 45 (2):611-622.
|
[15] |
MORA B L, GOTTSTEIN G, SHVINDLERMAN L S, Three-dimensional grain growth:analytical approaches and computer simulations[J]. Acta Materialia, 2008, 56(20):5915-5926.
|
[16] |
WAKAI F, ENOMOTO N, OGAWA H. Three-dimensional microstructural evolution in ideal grain growth-general statistics[J]. Acta Materialia, 2000, 48(6):1297-1311.
|
[17] |
VOTER A F. Introduction to the kinetic Monte Carlo method,radiation effects in solids[M]. Berlin,Germany: Springer, 2007.
|
[18] |
ANDERSON M P, SROLOVITZ D J, GREST G S, et al. Computer simulation of grain growth—I,Kinetics[J]. Acta Metallurgica, 1984, 32(5):783-791.
|
[19] |
ULLAH A, SHAHEEN M, KHAN A, et al. Evaluation of topology-dependent growth rate equations of three-dimensional grains using realistic microstructure simulations[J]. Materials Research Express, 2018, 6(2):026523.
|
[20] |
MOURITSEN O G, ZUCKERMANN M J. Model of interfacial melting[J]. Physical Review Letters, 1987, 58 (4):389.
pmid: 10034921
|
[21] |
IVASISHIN O M, SHEVCHENKO S V, VASILIEV N L, et al. A 3-D Monte-Carlo (Potts) model for recrystallization and grain growth in polycrystalline materials[J]. Materials Science and Engineering A, 2006, 433(1):216-232.
|
[22] |
KROESE D P, BRERETON T, TAIMRE T, et al. Why the Monte Carlo method is so important today[J]. Wiley Interdisciplinary Reviews:Computational Statistics, 2014, 6(6):386-392.
|
[23] |
洪嘉振. 计算多体系统动力学[M]. 北京: 高等教育出版社, 2003.
|
|
HONG J Z. Computational dynamics of multibody systems[M]. Beijing: Higher Education Press, 2003. (in Chinese)
|
[24] |
赵明亮, 陈松, 孙峰, 等. Si3N4陶瓷材料晶界特征分布研究[J]. 物理学报, 2021, 70(22):254-265.
|
|
ZHAO M L, CHEN S, SUN F, et al. Grain boundary character distributions in Si3N4 ceramics[J]. Acta Physica Sinica, 2021, 70(22):254-265. (in Chinese)
|
[25] |
SUN L C, LIU M Y, ZHENG L Y, et al. Reaction synthesis and mechanical properties of Lu4Si2O7N2[J]. Journal of the American Ceramic Society, 2013, 96(7):2264-2268.
|