[1] |
BAKER E, VOORT M V, MARTIN P. NATO standards and practice for munitions safety and insensitive munitions[J]. Problemy Mechatroniki:Uzbrojenie,Lotnictwo,Inzynieria Bezpieczeństwa, 2018, 3(33):7-14.
|
[2] |
伍俊英, 陈朗, 鲁建英, 等. 高能固体推进剂冲击起爆特征研究[J]. 兵工学报, 2008, 29(11):1315-1319.
|
|
WU J Y, CHEN L, LU J Y, et al. Research on shock initiation of the high energy solid propellants[J]. Acta Armamentarii, 2008, 29(11):1315-1319. (in Chinese)
|
[3] |
VICTOR A C. Insensitive munitions technology for tactical rocket motors[J] Progress in Astronautics and Aeronautics, 1996, 170:273-361.
|
[4] |
XU Y X, GAO P, WANG S S. Critical criterion for the shock initiation/ignition of cylindrical charges with thin aluminum shell impacted by steel fragment[J]. Propellants,Explosives,Pyrotechnics, 2017, 42(8):921-931.
|
[5] |
REAUGH J E. HERMES model modifications and applications 2012[R]. Livermore,CA, US: Lawrence Livermore National Lab, 2013:1-14.
|
[6] |
YUAN W X, GOLDSMITH W. Response of simulated propellant and explosives to projectile impact—III.experimental and numerical results of warhead penetration and fragmentation[J]. International Journal of Impact Engineering, 1992, 12(4):533-558.
|
[7] |
杨洋, 韩勇, 段英良, 等. 双钨球破片同时冲击柱壳装药起爆响应规律[J]. 兵工学报, 2021, 42(增刊1):46-52.
|
|
YANG Y, HAN Y, DUAN Y L, et al. Initiation response law of cylindrical charge subjected to simultaneous impact of two tungsten ball fragments[J]. Acta Armamentarii, 2021, 42(S1):46-52. (in Chinese)
|
[8] |
LEUS V, CEDER R, OGNEV V, et al. The role of tangential velocity in explosive initiation by fragment impact[J]. Defence Technology, 2022, 18(12):2190-2197.
doi: 10.1016/j.dt.2022.04.016
|
[9] |
董理赢, 谭向龙, 吴艳青, 等. 新型GAP/RDX/TEGDN推进剂宽应变率下的力学性能及模型参数标定[J]. 兵工学报, 2024, 45(12):4517-4529.
doi: 10.12382/bgxb.2023.1001
|
|
DONG L Y, TAN X L, WU Y Q, et al. Mechanical properties and model parameter calilbration of a novel GAP/RDX/TEGDN propellant at wide strain rate[J]. Acta Armamentarii, 2024, 45(12):4517-4529. (in Chinese)
|
[10] |
YANG K, DUAN H Z, WU Y Q, et al. Impact-induced deformation and ignition related to localized viscous shear flow heating for high-ductility composite energetic materials[J]. Materials & Design, 2022, 223:111185.
|
[11] |
AL-SHEHAB N, DOREMUS S, MIERS K, et al. Modeling and experimental fragment impact testing of the XM25[J]. Procedia Engineering, 2017, 204:292-299.
|
[12] |
STANFIELD J A, NEIDERT J B, HARSTAD E N, et al. High performance propellant fragment impact testing:small-scale and full-scale[R]. Albuquerque,NM, US: Sandia National Lab, 2016:1-20.
|
[13] |
PFEIL M A, STANFIELD J A, NEIDERT J B, et al. Parameters influencing the response of MSP-1 propellant subject to fragment impact[R]. Albuquerque,NM, US: Sandia National Lab, 2016:1-10.
|
[14] |
NEIDERT J B, PFEIL M A, STANFIELD J A, et al. Validation of the army burn to violent reaction (ABVR) test as a tool to predict full-scale motor response to fragment impact[R]. Albuquerque,NM, US: Aviation and Missile Research, Development and Engineering Center,2018:1-10.
|
[15] |
FINNEGAN S A, PRINGLE J K, ATWOOD A I, et al. Characterization of impact-induced violent reaction behavior in solid rocket motors using a planar motor test model[J]. International Journal of Impact Engineering, 1995, 17(1-3):311-322.
|
[16] |
TRUMEL H, DRAGON A, FANGET A, et al. A constitutive model for the dynamic and high-pressure behaviour of a propellant-like material:Part II:model development and applications[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(6):581-603.
|
[17] |
CULLIS I G, CORNISH R J, GOULD P J, et al. IM rocket motor design and assessment[Z/OL]. UK:QinetiQ, 2015[2024-03-18].
|
[18] |
HASKINS P J, COOK M D, BRIGGS R I, et al. Fragment attack of complete and sectioned rocket motors[R]. Insensitive Munitions & Energetic Materials Technology Symposium. Washington,D.C.,US: National Defense Industrial Association, 2009.
|
[19] |
YUAN W X, GOLDSMITH W, RADIN J, et al. Response of simulated propellant and explosives to projectile impact-I.material behavior and penetration studies[J]. International Journal of Impact Engineering, 1992, 12(4):475-497.
|
[20] |
汤钧晖, 王金涛, 沈飞, 等. 钨合金破片对固体推进装置的毁伤效应实验[J]. 火炸药学报, 2021, 44(5):674-679.
doi: 10.14077/j.issn.1007-7812.202106009
|
|
TANG J H, WANG J T, SHEN F, et al. Experiment on the damage effect of tungsten alloy fragments on solid propulsion device[J]. Chinese Journal of Explosives & Propellants, 2021, 44(5):674-679. (in Chinese)
|
[21] |
李文海, 张杰凡, 徐森, 等. HMX对固体推进剂在强烈冲击条件下反应特性的影响[J]. 固体火箭技术, 2019, 42(5):591-596.
|
|
LEE W H, ZHANG J F, XU S, et al. Effect of HMX on the reaction characteristics of solid propellants under strong impact conditions[J]. Journal of Solid Rocket Technology, 2019, 42(5):591-596. (in Chinese)
|
[22] |
李扬, 徐森, 马腾, 等. HTPE推进剂机械刺激下的安全性研究[J]. 火工品, 2023, 13(1):63-68.
|
|
LEE Y, XU S, MA T, et al. Study on safety of HTPE propellant under mechanical stimulation[J]. Initiators & Pyrotechnics, 2023, 13(1):63-68. (in Chinese)
|
[23] |
MOHAMMAD Z, GUPTA P K, BAQI A. Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact[J]. International Journal of Impact Engineering, 2020, 146:103717.
|
[24] |
ASAY B. Shock wave science and technology reference library,Vol. 5:non-shock initiation of explosives[M]. New York,NY, US:Springer, 2009.
|
[25] |
DONG L Y, WU Y Q, YANG K, et al. Study on dynamic deformation-damage-ignition mechanism of GAP/RDX/TEGDN propellant[J/OL]. Journal of Energetic Materials,1-19[2024-03-18].
|
[26] |
YANG K, WU Y Q, HUANG F L. Microcrack and microvoid dominated damage behaviors for polymer bonded explosives under different dynamic loading conditions[J]. Mechanics of Materials, 2019, 137:103130.
|
[27] |
REAUGH J E, WHITE B W, CURTIS J P, et al. A computer model to study the response of energetic materials to a range of dynamic loads[J]. Propellants,Explosives,Pyrotechnics, 2018, 43(7):703-720.
|