[1] MURPHY C L.Free flight motion of symmetric missiles[R]. Harford County, MD, US: Army Ballistic Research Lab,Aberdeen Proving Ground, 1971. [2] MCCOYR L. Modern exterior ballistics[M]. Atglen, PA,US: Schiffer Publishing Ltd., 1999. [3] 韩子鹏. 弹箭外弹道学[M]. 北京: 北京理工大学出版社, 2008:154-162. HAN Z P. Exterior ballistics of projectiles and rockets[M]. Beijing: Beijing Institute of Technology Press, 2008:154-162.(in Chinese) [4] 韩子鹏, 常思江, 史金光. 弹箭非线性运动理论[M]. 北京: 北京理工大学出版社, 2016:145-190. HAN Z P, CHANG S J, SHI J G. Nonlinear motion theory of projectile and rocket[M]. Beijing: Beijing Institute of Technology Press, 2016:145-190.(in Chinese) [5] 徐明友. 高等外弹道学[M]. 北京: 高等教育出版社, 2003. XU M Y. Advanced exterior ballistics[M]. Beijing: Higher Education Press, 2003.(in Chinese) [6] 陈亮, 刘荣忠, 郭锐, 等. 旋转尾翼弹箭极限圆锥运动稳定判据[J]. 兵工学报, 2019, 40(7):1329-1338. CHEN L, LIU R Z, GUO R, et al. Stability criteria for limiting conical motion of rotary fin-stabilized projectiles[J]. Acta Armamentarii, 2019, 40(7):1329-1338.(in Chinese) [7] 马国梁, 张海洋, 蔡红明, 等. 高原环境对弹丸动态稳定性的影响[J]. 国防科技大学学报, 2020, 42(1):101-107. MA G L, ZHANG H Y, CAI H M, et al. Influence of plateau environment on dynamic stability of projectiles[J]. Journal of National University of Defense Technology, 2020, 42(1):101-107.(in Chinese) [8] 钟扬威, 王良明, 傅健, 等. 弹箭非线性角运动稳定性Hopf分岔分析[J]. 兵工学报, 2015, 36(7):1195-1202. ZHONG Y W, WANG L M, FU J, et al. Hopf bifurcation analysis of nonlinear angular motion stability of projectile[J]. Acta Armamentarii, 2015, 36(7):1195-1202.(in Chinese) [9] 邢炳楠, 张志安, 杜忠华, 等. 尾翼式弹道修正弹Hopf分岔特性分析[J]. 振动与冲击, 2020, 39(2):255-261. XING B N, ZHANG Z A, DU Z H, et al. Hopf bifurcation analysis for a fin-stabilized projectile with course correction fuse[J]. Journal of Vibration and Shock, 2020, 39(2):255-261.(in Chinese) [10] 钟扬威. 旋转稳定二维弹道修正弹弹道特性分析与制导方法研究[D].南京: 南京理工大学, 2017. ZHONG Y W. Study on trajectory characteristics and guidance methods for spin stabilized two-dimensional trajectory correction projectiles[D]. Nanjing: Nanjing University of Science and Technology, 2017.(in Chinese) [11] MARIAE S, ALEXANDER N K. Estimation of regions of attraction of aircraft spin modes [J]. Journal of Aircraft, 2019, 56(1): 205-216. [12] JARVIS W Z, FEELEY R, TAN W, et al. Some controls applications of sum of squares programming[C]∥Proceedings of the 42nd IEEE Conference on Decision and Control. Piscataway, NJ, US: IEEE, 2003. [13] TAN W, PACKARD A.Searching for control Lyapunov functions using sums of squares programming[C]∥Proceedings of the 42nd Annual Allerton Conference on Communications, Control and Computing. Red Hook, NY, US: Curran Associates Inc., 2004. [14] HASSANK K. Nonlinear systems[M]. East Lansing, MI,US: Pearson Education Ltd., 2002. [15] 张琪昌, 王洪礼, 竺致文, 等. 分岔与混沌理论及应用[M]. 天津: 天津大学出版社, 2005. ZHANG Q C, WANG H L, ZHU Z W, et al. Bifurcation and chaos theory and its application[M]. Tianjin: Tianjin University Press, 2005.(in Chinese)
|