| [1]  DRESSEL  I, BARCKHAUSEN U, HEYDE I. A 3D gravity and magnetic model for the Entenschnabel area (German North Sea)[J]. International Journal of Earth Sciences, 2018, 107(1): 177-190.
 [2]  李金朋,张英堂,范红波,等.强剩磁条件下磁性目标三维正则化聚焦反演方法[J].兵工学报,2018,39(11):2202-2210.
 LI J P, ZHANG Y T, FAN H B, et al. Three-dimensional focusing inversion of magnetic target in the presence of significant remanence [J]. Acta Armamentarii, 2018,39(11):2202-2210.(in Chinese)
 [3]  李青竹,李志宁,张英堂,等.基于二阶磁张量欧拉反褶积的磁源单点定位方法[J].石油地球物理勘探,2019,54(4):915-924.
 LI Q Z, LI Z N, ZHANG Y T, et al. Magnetic source single-point positioning based on second-order magnetic tensor Euler deconvolution [J]. Oil Geophysical Prospecting, 2019, 54(4):915-924.(in Chinese)
 [4]  LI J P, ZHANG Y T, FAN H B, et al. Estimating the location of magnetic sources using magnetic gradient tensor data[J]. Exploration Geophysics, 2019,50(6): 600-612.
 [5]  LYRIO J C S O. Equivalent source: a  natural choice for gridding scatter gravity data [C]∥Proceedings of the 12th International Congress of the Brazilian Geophysical Society. Rio de Janeiro, Brazil: Brazilian Geophysical Society, 2011: 661-665.
 [6]  ALI A E O A, LIU Z, BAI Y L, et al. A stable gravity downward continuation for structural delineation in Sulu Sea region[J]. Journal of Applied Geophysics, 2018, 155: 26-35.
 [7]  陈涛,张贵宾.利用重力异常计算重力梯度的等效源技术[J]. 地球物理学进展,2019,34(4):1398-1410.
 CHEN T, ZHANG G B. Deriving the full gravitational gradient tensor from gravity anomaly: an equivalent source technique [J]. Progress in Geophysics, 2019,34(4):1398-1410.(in Chinese)
 [8]  李端,陈超,杜劲松,等.多层等效源曲面磁异常转换方法[J].地球物理学报,2018,61(7):3055-3073.
 LI D, CHEN C, DU J S, et al. Transformation of magnetic ano-maly  data on an arbitrary surface by multi-layer equivalent sources [J]. Chinese Jounal of  Geophysics, 2018,61(7):3055-3073. (in Chinese)
 [9]  谢汝宽,王平,刘浩军.基于最小反演拟合差的重磁场源深度计算方法[J].地球物理学报,2016,59(2):711-720.
 XIE R K, WANG P, LIU H J. Depth estimation of potential field by minimum inversion fitting error [J]. Chinese Journal of Geophysics, 2016,59(2):711-720.(in Chinese)
 [10]  MICKUS  K L, HINOJOSA J H. The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique [J]. Journal of Applied Geophysics, 2001, 46(3): 159-174.
 [11]  JIANG F Y, HUANG Y, YAN K. Full gravity gradient tensors from vertical gravity by cosine transform [J]. Applied Geophy- sics,  2012, 9(3): 247-260.
 [12]  BLAKELY R J. Potential theory in gravity and magnetic applications [M]. Cambridge, UK: Cambridge University Press, 1996.
 [13]  YIN G, ZHANG Y T, MI S L, et al. Calculation of the magnetic gradient tensor from total magnetic anomaly field based on regularized method in frequency domain[J]. Journal of Applied Geophysics, 2016, 134: 44-54.
 [14]  管志宁.地磁场与磁力勘探[M].北京:地质出版社,2005.
 GUAN Z N. Geomagnetic field and magnetic exploration [M]. Beijing: Geological Publishing House, 2005.(in Chinese)
 [15]  BLAKELY R J. Potential theory in gravity and magnetic applications[M]. Cambridge , UK: Cambridge University Press, 1996.
 [16]  CUI Y, GUO L. A wavenumber-domain interative approach for 3D imaging of magnetic anomalies and gradients with depth constraints[J]. Journal of Geophysics and Engineering, 2019,16(6): 1032-1047.
 [17]  PATEKA R, RICHTER F P, KARCOL R, et al. Regularized derivatives of potential fields and their role in semi-automated interpretation methods[J]. Geophysical Prospecting, 2009, 57(4):  507-516.
 [18]  曾小牛,李夕海,贾维敏,等. 位场各阶垂向导数换算的新正则化方法[J]. 地球物理学报, 2015, 58(4): 1400-1410.
 ZENG X N, LI X H, JIA W M, et al. A new regularization method for calculating the vertical derivatives of the potential field [J]. Chinese Journal of  Geophysics, 2015, 58(4): 1400-1410.(in Chinese)
 [19]  PATEKA R, KARCOL R, KUNIRK D, et al. REGCONT: a Matlab based program for stable downward continuation of geophysical potential fields using Tikhonov regularization[J]. Computers & Geosciences, 2012, 49: 278-289.
 [20]  YIN G, ZHANG Y T, FAN H B, et al. One-step calibration of magnetic gradient tensor system with nonlinear least square method[J].  Sensors and Actuators A: Physical, 2015, 229: 77-85.
 
 
 
 |