[1] Ward J.Space-time adaptive processing for airborne radar [R]. Lexington, MA, US: MIT Lincoln Laboratory, 1994. [2] Klemm R. Principles of sparse-time adaptive processing [M]. London, UK: Institute of Electrical Engineering, 2006. [3] Melvin W L. Space-time adaptive radar performance in heterogeneous clutter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (2):621-633. [4] Melvin W L, Wicks M C. Improving practical space-time adaptive radar [C]∥Proceedings of National Radar Conference on Aerospace and Components. Syracuse, NY, US: IEEE,1997: 48-53. [5] Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds [J]. IEEE Transactions on Signal Processing, 2005, 53 (6): 2101-2111. [6] 周宇,张林让,刘楠,等. 空时自适应处理中基于知识的训练样本选择策略[J]. 系统工程与电子技术, 2010, 32 (2):405-409. ZHOU Yu, ZHANG Lin-rang, LIU Nan, et al. Knowledge aided secondary data selection in space time adaptive processing [J]. Systems Engineering and Electronics, 2010, 32 (2):405-409. (in Chinese) [7] Yang X P, Liu Y X, Long T. Robust non-homogeneity detection algorithm based on prolate spheroidal wave functions for space-time adaptive processing [J]. IET Radar, Sonar and Navigation, 2013, 7 (1):47-54. [8] 王珽,赵拥军. 知识辅助的机载MIMO雷达STAP非均匀样本检测方法[J]. 系统工程与电子技术, 2015, 37 (10):2260-2265. WANG Ting, ZHAO Yong-jun. Knowledge-aided non-homogeneous samples detection method for airborne MIMO radar STAP [J]. Systems Engineering and Electronics, 2015, 37 (10):2260-2265. (in Chinese) [9] Du W T, Liao G S, Yang Z W. Robust space time processing based on bi-iterative scheme of secondary data selection and PSWF method [J]. Digital Signal Processing, 2016, 52(C):64-71.
[10] Kang S, Ryu J, Lee J, et al. Analysis of space-time adaptive processing performance using K-means clustering algorithm for normalisation method in non-homogeneity detector process [J]. IET Signal Processing, 2011, 5(2):113-120. [11] 高志奇,陶海红,赵继超. 基于S变换的机载雷达稳健空时自适应算法[J]. 系统工程与电子技术, 2016, 38(6):1268-1275. GAO Zhi-qi, TAO Hai-hong, ZHAO Ji-chao. Robust space-time adaptive processing based on S transform for airborne radar [J]. Systems Engineering and Electronics, 2016, 38(6):1268-1275. (in Chinese) [12] 王强,张永顺,刘汉伟,等. 基于矩阵相似度的空时二维干扰检测方法[J]. 系统工程与电子技术, 2017, 39(2):259-262. WANG Qiang, ZHANG Yong-shun, LIU Han-wei, et al. Interference detecting method for space-time two-dimension based on matrix similarity [J]. Systems Engineering and Electronics, 2017, 39 (2):259-262. (in Chinese) [13] Wu Y F, Wang T, Wu J X, et al. Training sample selection for space-time adaptive processing in heterogeneous environments [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 691-695. [14] Wu Y F, Wang T, Wu J X, et al. Robust training samples selection algorithm based on spectral similarity for space-time adaptive processing in heterogeneous interference environments [J]. IET Radar, Sonar and Navigation, 2015, 9 (7):778-782. [15] Sun K, Meng H, Wang Y, Wang X. Direct data domain STAP using sparse representation of clutter spectrum [J]. Signal Processing, 2011, 91 (9): 2222-2236. [16] 姜磊,王彤. 基于子空间的阵元误差估计方法[J].系统工程与电子技术, 2014, 36(4): 656-660. JIANG Lei, WANG Tong. Array error estimation using subspace-based approach[J]. Systems Engineering and Electronics, 2014, 36(4): 656-660. (in Chinese) [17] 刘汉伟,张永顺,王强,等. 基于稀疏重构的机载雷达训练样本挑选方法[J]. 系统工程与电子技术, 2016,38(7):1532-1537. LIU Han-wei, ZHANG Yong-shun, WANG Qiang, et al. Training sample selection for airborne radar algorithm based on sparse reconstruction [J]. Systems Engineering and Electronics, 2016, 38 (7):1532-1537. (in Chinese) [18] 高志奇,陶海红,赵继超. 基于联合稀疏功率谱恢复的机载雷达稳健STAP算法研究[J]. 电子学报, 2016, 44 (11):2796-2801. GAO Zhi-qi, TAO Hai-hong, ZHAO Ji-chao. Robust STAP algorithm based on joint sparse recovery of clutter spectrum for airborne radar [J]. Acta Electronica Sinica, 2016, 44 (11):2796-2801. (in Chinese) [19] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm [J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616. [20] 朱轶昂. 稳健功率谱稀疏恢复空时自适应处理方法研究[D]. 深圳:深圳大学, 2017. ZHU Yi-ang. Research on robust spatial-temporal spectrum recovery for space-time adaptive processing[D]. Shenzhen:Shenzhen University, 2017.(in Chinese) [21] Shnidman D A. Expanded swerling target models [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1059-1069.
第39卷第2期 2018 年2月兵工学报ACTA ARMAMENTARIIVol.39No.2Feb. 2018
|