兵工学报 ›› 2012, Vol. 33 ›› Issue (2): 214-220.doi: 10.3969/j.issn.1000-1093.2012.02.014
江燕华, 熊光明, 姜岩, 龚建伟, 陈慧岩
收稿日期:
2011-03-28
修回日期:
2011-03-28
上线日期:
2014-03-04
作者简介:
江燕华(1987—), 女, 博士研究生
基金资助:
JIANG Yan-hua, XIONG Guang-ming, JIANG Yan, GONG Jian-wei, CHEN Hui-yan
Received:
2011-03-28
Revised:
2011-03-28
Online:
2014-03-04
摘要: 对智能车辆视觉里程计算法进行了综述,首先说明了视觉里程计的基本原理,然后从所使用的信息特征、相机配置、两帧或多帧计算框架等方面对视觉里程计系统进行了分类与比较,其次详细介绍了视觉里程计算法中的关键技术问题,包括特征选择与匹配、鲁棒运动估计等,最后讨论了视觉里程计未来发展方向。
中图分类号:
江燕华, 熊光明, 姜岩, 龚建伟, 陈慧岩. 智能车辆视觉里程计算法研究进展[J]. 兵工学报, 2012, 33(2): 214-220.
JIANG Yan-hua, XIONG Guang-ming, JIANG Yan, GONG Jian-wei, CHEN Hui-yan. A Review of Visual Odometry for Intelligent Vehicles[J]. Acta Armamentarii, 2012, 33(2): 214-220.
[1] 吴功伟. 立体视觉里程计的关键技术研究[D]. 杭州:浙江大学,2007. WU Gong-wei. Research on key technologies in stereo visual odometry[D]. Hangzhou: Zhejiang University, 2007. (in Chinese) [2] Moravec H. Obstacle avoidance and navigation in the real world by a. seeing robot rover[D]. Stanford: Univ. of Stanford, 1980. [3] Matthies L, Shafer S A. Error modeling in stereo navigation[J]. IEEE J. Robot. Automat., 1987, RA23(3):239-250. [4] 彭勃, 周文晖, 刘济林. 基于Harris角点检测的立体视觉里程计[J]. 兵工学报,2007,28(12):1498-1502. PENG Bo, ZHOU Wen-hui, LIU Ji-lin. Harris corner detection-based stereo visual odometry[J]. Acta Armanmentarii, 2007, 28(12):1498-1502. (in Chinese) [5] Eade E, Drummond T. Scalable monocular SLAM[C]∥Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2006: 469-476. [6] Davison A J, Reid I D, Molton N D, et al. Mono SLAM: real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067. [7] Davison A J. Real-time simultaneous localization and mapping with a single camera[C]∥Proc. International Conference on Computer Vision, Nice: IEEE, 2003: 1403-1410. [8] 马玉娇. 基于立体视觉里程计的移动机器人定位研究[D]. 武汉:武汉科技大学,2009. MA Yu-jiao. Research on mobile robot localization based on stereo visual odometry[D]. Wuhan: Wuhan University of Science and Technology, 2009. (in Chinese) [9] Badino H. A robust approach for ego-motion estimation using a mobile stereo platform[J]. Lecture Notes in Computer Science, 2007, 3417: 198-208. [10] Nistér D, Naroditsky O, Bergen J. Visual odometry[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington: IEEE, 2004: 652-659. [11] Mouragnon E, Lhuillier M, Dhome M, et al. Real time localization and 3D reconstruction[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2006: 363-370. [12] Tardif J, Pavlidis Y, Daniilidis K. Monocular visual cdometry in urban environments using an omnidirectional camera[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice: IEEE, 2008: 2531-2538. [13] Corke P, Strelow D, Singh S. Omnidirectional visual odometry for a planetary rover[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2004: 4007-4012. [14] Agrawal M, Konolige K. Rough terrain visual odometry[C]. International Conference on Advanced Robotics, Menlo Park: 2007. [15] Hirschmüller H, Innocent P R, Garibaldi J M. Fast, unconstrained camera motion estimation from stereo without tracking and robust statistics[C]∥In International Conference on Control, Automation, Robotics and Vision, Singapore: Nayang Technological Univ, 2002: 1099-1104. [16] Milella A, Reina G. Vision-based methods for mobile robot localization and wheel sinkage estimation[C]∥ASME Dynamic Systems and Control Conference, Michigan: 2008: 625-621. [17] Milella A, Siegwart R. Stereo-based ego-motion estimation using pixel-tracking and iterative closest point[C]∥Proc. IEEE International Conference on Computer Vision Systems, New York: IEEE, 2006: 21-27. [18] Kitt B, Geiger A, Lategahn H. Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme[C]∥IEEE Intelligent Vehicle Symposium, San Diego: IEEE, 2010: 486-492. [19] Howard A. Real-time stereo visual odometry for autonomous ground vehicles[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice: IEEE, 2008: 3946-3952. [20] García-García R, Sotelo M A, Parra I, et al. 3D visual odometry for road vehicles[J]. Journal of Intelligent and Robotic Systems Archive, 2008, 51(1): 113-134. [21] Sappa A D, Dornaika F, Ponsa D, et al. An efficient approach to onboard stereo vision system POSE estimation[J]. IEEE Trans. Intell. Transp. Syst, 2008, 9(3): 476-490. [22] Jong Weon Lee, Suya You, Ulrich Neumann. Large motion estimation for omnidirectional vision[C]∥IEEE Workshop on Omnidirectional Vision, Hilton Head Island: IEEE, 2000: 161-168. [23] Wen Lik Dennis Lui, Ray A. Jarvis. An omnidirectional vision system for outdoor mobile robots[C]∥IEEE Workshop on Omnidirectional Robot Vision, Anchorage: IEEE, 2008: 273-284. [24] Parra I, Sotelo M A, Llorca D F. Robust visual odometry for vehicle localization in urban environments[J]. Robotica, 2010, 28(3): 441-452. [25] Parra I, Sotelo M A, Vlacic L. Robust visual odometry for complex urban environments[C]∥IEEE Intelligent Vehicles Symposium, Eindhoven: IEEE, 2008: 440-445. [26] Triggs B, McLauchlan P F, Hartley R I, et al. Bundle adjustment-a modern synthesis[J]. In Vision Algorithms: Theory and Practice, ser. LNCS. Springer Verlag, 2000, 1883: 298-375. [27] Shum H, K E Q, Zhang Z. Efficient bundle adjustment with virtual key frames: a hierarchical approach to multi-frame structure from motion[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Collins: IEEE, 1999: 538-543. [28] Jungho Kim,In So Kweon. Vision-based autonomous navigation based on motion estimation[C]∥International Conference on Control, Seoul: Automation and Systems, 2008: 1738-1743. [29] Royer E, Lhuillier M, Dhome M, et al. Monocular vision for mobile robot localization and autonomous navigation[J]. International Journal of Computer Vision, 2007, 74(3): 237-260. [30] Levin A, Szeliski R. Visual odometry and map correlation[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington: IEEE, 2004:1611-1618. [31] Konolige K, Agrawal M, Sola J. Large scale visual odometry for rough terrain[C]∥In International Symposium on Research in Robotics, Hiroshima: 2007. [32] Kwolek B. Visual odometry based on gabor filters and sparse bundle adjustment[C]∥IEEE International Conference on Robotics and Automation, Roma: IEEE, 2007: 3573-3578. [33] Chiuso A, Favaro P, Jin H, et al. Structure from motion causally integrated over time[J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2002, 24(4): 523-535. [34] Rudolph van der Merwe, Eric A. Wan. Sigma-point kalman filters for integrated navigation[C]∥Proc. Annual Meeting of The Institute of Navigation, Dayton: NSF, 2004: 641-654. [35] Mclauchlan P, Reid I, Murray D. Recursive affine structure and motion from image sequences[C]∥Proc. European Conf. Comp. Vision, Stockholm: Springer Verlag, 1994: 217-224. [36] García-García R G, Sotelo M A, Parra I, et al. 3D visual odometry for GPS navigation assistance[C]∥Proc. IEEE Intelligent Vehicles Symposium, Istanbul: IEEE, 2007: 444-449. [37] Zhu Z, Oskiper T, Samarasekera S, et al. Sawhney. Ten-fold improvement in visual odometry using landmark matching[C]∥IEEE International Conference on Computer Vision, Rio de Janeiro: IEEE, 2007: 1747-1754. [38] Oskiper T, Zhu Z, Samarasekera S. Visual odometry system using multiple stereo cameras and inertial measurement unit[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis: IEEE, 2007: 976-983. [39] P. H. S . Torr and A. Zisserman. Feature based methods for structure and motion estimation[J]. in Vision Algorithms: Theory and Practice, 2000, 1883: 278-295. [40] Taylor C J, Kriegman D J. Structure and motion from line segments in multiple images[J]. IEEE Trans. on Pattern Anal. Mach. Intell., 1995, 17(11): 1021-1032. [41] Wong K Y K, Mendonca P R S, Cipolla R. Structure and motion estimation from apparent contours under circular motion[J]. Image and Vision Computing, 2002, 20: 441-448. [42] Schmid C, Mohr R, Baukhage C. Evaluation of interest point detectors[J]. International Journal of Computer Vision, 2000, 37(2): 151-172. [43] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [44] 李智, 周文晖, 刘济林. 动态场景下基于视差空间的立体视觉里程计[J]. 浙江大学学报(工学版),2008,42(10):1661-1665. LI Zhi, ZHOU Wen-hui, LIU Ji-lin. Stereo visual odometry from disparity space in dynamic environments[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(10): 1661-1665. (in Chinese) [45] Gong P L, Zhang Q F, Zhang A Q. Stereo vision based motion estimation for underwater vehicles[C]∥International Conference on Intelligent Computation Technology and Automation, Changsha: IEEE, 2009: 745-749. [46] Rodriguez S A, Fremont F V, Bonnifait P. An experiment of a 3D real-time robust visual odometry for intelligent vehicles[C]∥Proc. International Conference on Intelligent Transportation Systems, Shizuoka: IEEE, 2009: 226-231. [47] Zhang T, Liu X, Kuhnlenz K, et al. Visual odometry for the autonomous city explorer[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis: IEEE, 2009: 3513-3518. [48] Gordon I, Lowe D G. What and where: 3D object recognition with accurate pose[C]∥International Symposium on Mixed and Augmented Reality, Santa Barbara: IEEE, 2006: 67-82. [49] Horn B K P. Relative orientation[J]. International Journal of Computer Vision, 1990, 4: 59-78. [50] Nistér D. An efficient solution to the five-point relative pose problem[J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2004, 26(6): 756-770. [51] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with apphcatlons to image analysis and automated cartography[J]. Graphics and Image Processing, 1981, 24(6): 381-395. [52] Nister D. Preemptive RANSAC for live structure and motion estimation[C]∥Proc. International Conference on Computer Vision, Nice: 2003: 199-206. [53] Scaramuzza D, Fraundorfer F, Siegwart R. Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC[C]∥International Conference on Robotics and Automation, Kobe: 2009: 4293-4299. [54] Nourani-Vatani N, Roberts J, Srinivasan M V. Practical visual odometry for car-like vehicles[C]∥International Conference on Robotics and Automation, Kobe: 2009: 3551-3557. [55] Haralick R, Lee C, Ottenberg K, et al. Review and analysis of solutions of the three point perspective pose estimation problem[J]. International Journal of Computer Vision, 1994, 13(3): 331-356. [56] Nistér D. A minimal solution to the generalised 3-Point pose problem[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington: IEEE, 2004: 560-567. [57] Horn B K P, Hilden H M, Negahdaripour S. Closed-form solution of absolute orientation using orthonormal matrices[J]. Journal Opt. Soc. Am. A, 1988, 5: 1127-1135. [58] Horn B K P. Closed-form solution of absolute orientation using unit quaternions[J]. Journal Opt. Soc. Am. A, 1987, 4(4): 629-642. [59] Stéwenius H, Engels C, Nistér D. Recent developments on direct relative orientation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60: 284-294. [60] Matthies L, Maimone M, Johnson A, et al. Computer vision on mars[J]. International Journal of Computer Vision, 2007, 75(1): 67-92. [61] Kitt B, Moosmann F, Stiller C. Moving on to dynamic environments: visual odometry using feature classification[C]∥International Conference on Intelligent Robots and Systems, Taipei: IEEE, 2010: 5551-5556. [62] Sakai A, Mitsuhashi M, Kuroda Y. Noise model creation for visual odometry with neural-fuzzy model[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei: IEEE, 2010: 5190-5195. [63] Sáez J M, Escolano F. 6DOF entropy minimization SLAM for stereo-based wearable devices[J]. Computer Vision and Image Understanding, 2011, 115(2): 270-285. |
[1] | 蒋岩, 丁语嫣, 张兴龙, 徐昕. 基于模型预测与策略学习的智能车辆人机协同控制算法[J]. 兵工学报, 2023, 44(11): 3465-3477. |
[2] | 曹昊哲, 刘全攀. 基于半直接法的无人集群协同视觉SLAM算法[J]. 兵工学报, 2023, 44(11): 3345-3358. |
[3] | 密俊霞, 于会龙, 席军强. 基于MLP-SVM的驾驶员换道行为预测[J]. 兵工学报, 2022, 43(12): 3020-3029. |
[4] | 吴超, 吴绍斌, 李子睿, 孙冬. 基于人机交互的免锚检测和跟踪系统设计[J]. 兵工学报, 2022, 43(10): 2565-2575. |
[5] | 陆瑶敏, 龚建伟, 王博洋, 关海杰. 基于多重示范的智能车辆运动基元表征与序列生成[J]. 兵工学报, 2021, 42(4): 851-861. |
[6] | 王威, 陈慧岩, 马建昊, 刘凯, 龚建伟. 基于Frenet坐标系和控制延时补偿的智能车辆路径跟踪[J]. 兵工学报, 2019, 40(11): 2336-2351. |
[7] | 曾溢良, 蓝金辉, 邹金霖. 滑动置信度约束的红外弱小目标跟踪算法研究[J]. 兵工学报, 2017, 38(9): 1771-1778. |
[8] | 李关防, 崔杰, 袁富宇. 基于线谱瞬时频率估计的被动声纳目标运动分析[J]. 兵工学报, 2017, 38(7): 1395-1401. |
[9] | 朱甦, 薄煜明, 何亮. 基于冗余字典的多特征压缩感知目标跟踪算法[J]. 兵工学报, 2017, 38(6): 1140-1146. |
[10] | 王啸, 韩太林, 张永立, 刘轩, 王义君, 宫玉琳. 多通道瞬态信号自适应变频算法[J]. 兵工学报, 2017, 38(6): 1161-1167. |
[11] | 陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38(6): 1203-1214. |
[12] | 张石, 张百海, 王飞帆, 关子霄. 基于跳数量化的无线传感器网络节点定位算法[J]. 兵工学报, 2017, 38(5): 932-939. |
[13] | 夏平, 任强, 吴涛, 雷帮军. 融合多尺度统计信息模糊C均值聚类与Markov随机场的小波域声纳图像分割[J]. 兵工学报, 2017, 38(5): 940-948. |
[14] | 曹俊, 郑翠娥, 孙大军, 张殿伦. 基于凸优化的水下载体定位研究[J]. 兵工学报, 2017, 38(3): 520-526. |
[15] | 向颉, 茅永兴, 郭才发. 船载雷达测速数据的船速修正新方法[J]. 兵工学报, 2017, 38(11): 2268-2273. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 536
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 434
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||