[1] 梁小安, 蒋斌, 姚果,等. 未来智能化战争条件下装备保障发展趋势探究[J]. 飞航导弹, 2020(4):22-25.
LIANG X A, JIANG B, YAO G, et al. Research on the development trend of equipment support under the condition of future intelligent war[J]. Aerodynamic Missile Journal, 2020(4): 22-25. (in Chinese) [2] 滕尚儒,何成铭,丛彬.陆军装备维修器材生产路径问题综述[J].兵器装备工程学报,2020,41(3): 216-222. TENG S R, HE C M, CONG B. Review on production routing problem of army maintenance equipment[J]. Journal of Ordnance Equipment Engineering, 2020, 41(3): 216-222. (in Chinese) [3] 李浩, 王铁宁. 基于组合预测的装甲装备器材需求确定[J]. 系统工程与电子技术, 2018, 40(10): 2276-2281. LI H, WANG T N. Armored equipment material demand ascertaining based on forecast combination[J]. Systems Engineering and Electronics, 2018, 40(10): 2276-2281. (in Chinese) [4] 杨帆, 王铁宁, 吴龙涛,等. 基于任务的装备器材非稳态需求预测[J]. 系统工程与电子技术, 2019, 41(12): 2796-2801. YANG F, WANG T N, WU L T, et al. Unstable equipment material demand forecasting based on tasks[J]. Systems Engineering and Electronics, 2019, 41(12):2796-2801.(in Chinese) [5] LI X, ZHAO X D, PU W. An approach for predicting digital material consumption in electronic warfare[J]. Defence Technology, 2019, 16(1): 263-273. [6] 刘旭阳, 吴龙涛, 周万里. 基于ARIMA模型的装备器材需求预测方法[J].装甲兵工程学院报, 2016, 30(6):21-25. LIU X Y, WU L T, ZHOU W L. Equipment material demand forecasting method based on ARIMA model[J]. Journal of Academy of Armored Force Engineering, 2016, 30(6): 21- 25. (in Chinese) [7] 吴龙涛, 王铁宁, 杨帆,等. 基于贝叶斯法和蒙特卡洛仿真的威布尔型装备器材需求预测[J]. 兵工学报, 2017, 38(12): 2447-2454. WU L T, WANG T N, YANG F, et al. Demand forecasting of equipment and materials by Weibull distribution based on Bayesian estimation and Monte Carlo simulation[J]. Acta Armamentarii, 2017, 38(12): 2447-2454. (in Chinese) [8] 陈顶, 方志耕, 刘思峰. 可修排队系统备件灰色生灭预测模型[J]. 系统工程理论与实践, 2020, 40(5): 1326-1338. CHEN D, FANG Z G, LIU S F. Grey BD prediction model for spare parts of repairable queuing system[J]. System Engineering-Theory & Practice, 2020, 40(5):1326-1338. (in Chinese) [9] 陈顶, 方志耕, 刘思峰. 基于灰色生灭过程的可修部件备件需求预测模型[J]. 系统工程与电子技术, 2017, 39(12): 2709-2715. CHEN D, FANG Z G, LIU S F. Spare parts demand forecasting model of repairable components based on grey birth and death process[J]. Systems Engineering and Electronics, 2017, 39(12): 2709-2715. (in Chinese) [10] 徐廷学, 杜峻名, 蓝天. 基于马尔科夫与蒙特卡罗仿真的导弹装备备件需求量预测[J]. 兵工自动化, 2011, 30(10): 85-87. XU T X, DU J M, LAN T. Demand prediction for spare parts of missile materiel based on Markov and Monte Carlo simulation[J]. Ordnance Industry Automation, 2011, 30(10): 85-87. (in Chinese) [11] CHIOU H K, TZENG G H, CHENG C K, et al. Grey prediction model for forecasting the planning material of equipment spare parts in Navy of Taiwan[C]∥Proceedings of World Automation Congress. Seville, Spain: IEEE, 2004. [12] CHEN B, SUN S Q, LIU G. An optimized unbiased GM (1, 1) power model for forecasting MRO spare parts inventory[J]. Modern Applied Science, 2012, 6(6): 12-17. [13] HU Y G, SUN S, WEN J Q. Agricultural machinery spare parts demand forecast based on BP neural network[J]. Applied Mechanics & Materials, 2014, 635/636/637: 1822-1825. [14] JU F Y, HONG W C. Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting[J]. Applied Mathematical Modelling, 2013, 37(23): 9643-9651. [15] 张彤, 刘镭, 徐浩军,等. 基于SVR弹药消耗数量的预测建模[J]. 火力指挥与控制, 2010, 35(12): 8-10,17. ZHANG T, LIU L, XU H J, et al. Forecast modeling of ammo wastage based on SVR[J]. Fire Control & Command Control, 2010, 35(12): 8-10,17. (in Chinese) [16] YASEEN Z M, FU M L, WANG C, et al. Application of the hybrid artificial neural network coupled with rolling mechanism and grey model algorithms for streamflow forecasting over multiple time horizons[J]. Water Resources Management, 2018, 32(5): 1883-1899. [17] 裴帅,王铁宁,陈春良.基于BP神经网络的装备器材需求预测模型[J].装甲兵工程学院学报, 2008, 22(3): 26-28. PEI S, WANG T N, CHEN C L. Equipment material demand forecast model based on BPNN[J]. Journal of Academy of Armored Force Engineering, 2008, 22(3): 26-28. (in Chinese) [18] KUMAR U, JAIN V K. Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India[J]. Energy, 2010, 35(4): 1709-1716. [19] BRENDAN J F, DELBERT D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. [20] 纪汉霖, 李兆信. 多种聚类算法性能的比较分析[J]. 计算机技术与发展,2020, 30(8):14-21. JI H L, LI Z X. Comparative analysis of performance of multiple clustering algorithms[J]. Computer Technology and Development, 2020, 30(8):14-21. (in Chinese) [21] 邱志平, 尼早. 航空装备备件需求量的概率区间计算方法[J]. 航空学报, 2009, 30(5): 861-866. QIU Z P, NI Z. Probabilistic interval approach for determining the demand of aviation spares[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 861-866. (in Chinese) [22] MADADI M, KHALILPOOR P, JAMALIZADEH A. Regression mean residual life of a system with three dependent components with normal lifetimes[J]. Statistics & Probability Letters, 2015,100:182-191. [23] 孔繁涛, 周林, 张琳,等. 基于保障概率的装备磨损单元备件配置研究[J]. 现代防御技术, 2013, 41(1): 154-157. KONG F T, ZHOU L, ZHANG L, et al. Research of equipment wear part demand based on supportability[J]. Modern Defence Techonology, 2013, 41(1): 154-157. (in Chinese)
下7篇留版
|