[1] GE S S, CUI Y J. New potential functions for mobile robot path planning[J]. IEEE Transactions on Robotics and Automation, 2000, 16(5): 615-620. [2] 陈天德, 黄炎焱, 沈炜. 基于虚拟障碍物法的无震荡航路规划[J]. 兵工学报, 2019, 40(3): 651-658. CHEN T D, HUANG Y Y, SHEN W. Non-oscillation path planning based on virtual obstacle method[J]. Acta Armamentarii, 2019, 40(3): 651-658. (in Chinese) [3] 李东方, 王超, 邓宏彬, 等. 基于人工势场和RRT算法的机器蛇水下三维避障算法[J]. 兵工学报, 2017, 38(增刊1): 205-214. LI D F, WANG C, DENG H B, et al. 3D intelligent ob-stacle avoidance algorithm based on artificial potential field method and rapidly-exploring random tree[J]. Acta Armamentarii, 2017, 38(S1): 205-214. (in Chinese) [4] QIAN Q W, WU J F, WANG Z. Optimal path planning for two-wheeled self-balancing vehicle pendulum robot based on quantum-behaved particle swarm optimiza-tion algorithm[J]. Personal and Ubiquitous Computing, 2019 ,23(3): 393-403. [5] 张献, 任耀峰, 王润芃. 基于自适应遗传算法的连续时空最优搜索路径规划研究[J]. 兵工学报, 2015, 36(12): 2386-2395. ZHANG X, REN Y F, WANG R P. Research on optimal search path programming in continuous time and space based on an adaptive genetic algorithm[J]. Acta Armamentarii, 2015, 36(12): 2386-2395. (in Chinese) [6] CHEN Y J, XIANG S S, CHEN F X. Research on a task planning method for multi-ship cooperative driving[J]. Journal of Shanghai Jiaotong University(Science), 2019, 24(2): 99-108. [7] 薛裕颖, 张祥银, 张国梁, 等. 基于量子行为烟花算法的移动机器人路径规划及平滑[J]. 控制理论与应用, 2019, 36(9): 1398-1408. XUE Y Y, ZHANG X Y, ZHANG G L, et al. Path planning and smoothing based on quantum-behaved fireworks algorithm for mobile robot[J]. Control Theory & Applications, 2019, 36(9): 1398-1408. (in Chinese) [8] MABROUK M H, MCLNNES C R. Solving the potential field local minimum problem using internal agent states[J]. Robotics and Autonomous Systems, 2008, 56(12): 1050-1060. [9] MABROUK M H, MCLNNES C R. An emergent wall following behaviour to escape local minima for swarms of agents[J]. IAENG International Journal of Computer Science, 2008, 35(4): 463-476. [10] RIMON E, KODITSCHEK D E. Exact robot navigation using artificial potential functions[J]. IEEE Transac-tions on Robotics and Automation, 1992, 8(5): 501-518. [11] CONNOLLY C I, GRUPEN R A. The applications of harmonic functions to robotics[J]. Journal of Robotic Systems, 1993, 10(7): 931-946. [12] VOLPE R, KHOSLA P. Manipulator control with superquadric artificial potential functions: theory and experiments[J]. IEEE Transactions on Systems, Man and Cybernetics, 1990, 20(6): 1423-1436. [13] BARRAQUAND J, LANGLOIS B, LATOMBE J C. Numerical potential field techniques for robot path planning[J]. IEEE Transactions on Systems, Man and Cybernetics, 1992, 22(2): 224-241. [14] CHANG H. A new technique to handle local minimum for imperfect potential field based motion planning[C]∥Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis, MN, US: IEEE, 1996. 108-112. [15] 叶炜垚, 王春香, 杨明, 等. 基于虚拟障碍物的移动机器人路径规划方法[J]. 机器人, 2011, 33(3): 273-278, 286. YE W Y, WANG C X, YANG M, et al. Virtual obstacles based path planning for mobile robots[J]. Robot, 2011, 33(3): 273-278, 286. (in Chinese) [16] YUN X, TAN K C. A wall-following method for escaping local minima in potential field based motion planning[C]∥Procee- dings of International Conference on Advanced Robotics. Monterey, CA, US: IEEE, 1997: 421-426. [17] 翟红生, 王佳欣. 基于人工势场的机器人动态路径规划新方法[J]. 重庆邮电大学学报(自然科学版), 2015, 27(6): 814-818. ZHAI H S, WANG J X. Dynamic path planning research for mobile robot based on artificial potential field[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(6):814-818. (in Chinese) [18] 黄辰, 费继友, 刘洋, 等. 基于动态反馈A*蚁群算法的平滑路径规划方法[J]. 农业机械学报, 2017, 48(4): 34-40, 102. HUANG C, FEI J Y, LIU Y, et al. Smooth path planning method based on dynamic feedback A* ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 34-40, 102. (in Chinese) [19] 叶彬强, 王一. 基于人工势场法的机器人避障算法[J]. 重庆理工大学学报(自然科学版), 2012, 26(9): 82-85. YE B Q, WANG Y, Research of obstacle avoidance algorithm for robot based on artificial potential field[J]. Journal of Chongqing University of Technology(Natural Science), 2012, 26(9): 82-85. (in Chinese) [20] 石鸿雁, 孙昌志. 一种基于混沌优化算法的机器人路径规划方法[J]. 机器人, 2005, 27(2): 152-157. SHI H Y, SUN C Z. Path planning method for robot based on chaotic optimization algorithm[J]. Robot, 2005, 27(2): 152-157. (in Chinese) [21] 吴镜开, 黄远灿, 王世兴. 基于势场法的移动机器人避障路径规划[J]. 微计算机信息, 2007,23 (5): 228-230. WU J K, HUANG Y C, WANG S X. Anti-collision path planning for mobile robot based on potential field method[J]. Microcomputer Information, 2007,23(5): 228-230. (in Chinese) [22] RECEVEUR J B, VICTOR S, MELCHIOR P. New interpretation of fractional potential fields for robust path planning[J]. Fractional Calculus and Applied Analysis, 2019, 22(1): 113-127. [23] WANG H, HUANG Y J, KHAJEPOUR A, et al. Crash mitigation in motion planning for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3313-3323.
|