[1] 陈建华, 穆希辉, 杜峰坡, 等. 评价指标体系下的外骨骼支撑相控制效果[J]. 科技导报, 2019, 37(13): 88-92. CHEN J H, MU X H, DU F P, et al. Study on control effect of exoskeleton during support phase through an evaluation indicator system[J].Science & Technology Review, 2019, 37(13): 88-92. (in Chinese) [2] 宋遒志, 王晓光, 王鑫, 等. 多关节外骨骼助力机器人发展现状及关键技术分析[J]. 兵工学报, 2016, 37(1):172-185. SONG Q Z, WANG X G, WANG X, et al. Development of multi-joint exoskeleton-assisted robot and its key technology analysis: an overview [J]. Acta Armamentarii, 2016, 37(1):172-185. (in Chinese) [3] 屠尧,朱爱斌,宋纪元,等.下肢外骨骼康复机器人人机交互力自适应导纳控制[J]. 西安交通大学学报, 2019, 53(6):1-8. TU Y, ZHU A B, SONG J Y, et al. Human-computer interaction adaptive admittance control for lower extremity exoskeleton rehabi- litation robot[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 1-8. (in Chinese) [4] 陈勇, 吴维, 朱希伟, 等. 外骨骼助行机器人变刚度驱动的研究进展[J]. 机械工程师, 2018(4):5-7. CHEN Y, WU W, ZHU X W, et al. Research progress of variable stiffness drives for exoskeleton walking robot [J]. Mechanical Engineer, 2018(4):5-7. (in Chinese) [5] 李根生,佀国宁,徐飞. 下肢外骨骼机器人控制策略研究进展[J]. 中国康复医学杂志, 2018, 33(12):1488-1494. LI G S, SI G N, XU F. Research of control strategies for lower extremity exoskeleton robots[J]. Chinese Journal of Rehabilitation Medicine, 2018, 33(12):1488-1494. (in Chinese) [6] 佀国宁,黄琬婷,李根生,等. 下肢外骨骼机器人柔顺特性的研究进展[J]. 生物医学工程学杂志, 2019, 36(1):157-163. SI G N, HUANG W T, LI G S, et al. Research progress on compliant characteristics of lower extremity exoskeleton robots [J]. Journal of Biomedical Engineering, 2019, 36(1):157-163. (in Chinese) [7] 杨智勇, 顾文锦,张静, 等. 单兵负荷骨骼服的力控制理论与方法[M]. 北京: 国防工业出版社, 2013. YANG Z Y, GU W J, ZHANG J, et al. Force control theory and method of skeletal suit loaded by single soldier [M]. Beijing: National Defense Industry Press, 2013. (in Chinese) [8] TRAN T H, CHENG H, RUI H, et al. Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton[J]. International Journal of Social Robotics, 2016, 8(1):103-123. [9] TRAN T H, CHENG H, DUONG M, et al. Fuzzy-based impedance regulation for control of the coupled human-exoskeleton system[C]∥Proceedings of International Conference on Robotics & Biomimetics. Bali, Indonesia: IEEE, 2014:986.
[10] AUGIRRE O G, COLGATE J E, PESHKIN M A, et al. A 1-DOF assistive exoskeleton with virtual negative damping: effects on the kinematic response of the lower limbs[C]∥Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA,US: IEEE, 2007. [11] ZAHARI T, ANWAR P P, ABDUL M, et al. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation[J]. Biomedical Engineering/Biomedizinische Technik, 2018, 63(4):491-500. [12] 刘棣斐, 唐志勇, 裴忠才. 基于导纳原理的下肢外骨骼摆动控制[J]. 北京航空航天大学学报, 2015, 41(6):1019-1025. LIU D F,TANG Z Y,PEI Z C. Swing motion control of lower extremity exoskeleton based on admittance method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1019-1025. (in Chinese) [13] 徐国政, 宋爱国, 刘会军. 基于模糊逻辑的上肢康复机器人阻抗控制实验研究[J]. 机器人, 2010, 32(6):792-798. XU G Z, SONG A G, LI H J. Experimental study on fuzzy-logic-based impedance control for upper-limb rehabilitation robot[J]. Robot, 2010, 32(6):792-798. (in Chinese) [14] 徐国政, 宋爱国, 刘会军. 基于模糊推理的上肢康复机器人自适应阻抗控制[J]. 东南大学学报 (自然科学版), 2009, 39(1):156-160. XU G Z, SONG A G, LIU H J. Fuzzy-based adaptive impedance control for upper-limb rehabilitation robot[J]. Journal of Southeast University(Natural Science Edition), 2009, 39(1):156-160. (in Chinese) [15] KNUDSON D. 生物力学基础[M]. 第2版. 钟亚平, 胡卫红, 译. 北京:人民体育出版社, 2012. KNUDSON D. Biomechanics foundation [M]. 2nd ed. ZHONG Y P, HU W H, Translated. Beijing: People's Sports Publishing House of China, 2012. (in Chinese) [16] WANG T M, HUANG H P, LI J D, et al. Leg and joint stiffness in children with spastic diplegic cerebral palsy during level walking[J]. PLoS ONE, 2015, 10(12):e143967. [17] FARLEY C T, GONZLEZ O. Leg stiffness and stride frequency in human running[J]. Journal of Biomechanics, 1996, 29(2):181-186. [18] LATASH M L, ZATSIORSKY V M. Joint stiffness myth or reality?[J]. Human Movement Science,1993, 12(6):653-692. [19] 徐丽媛. 不同高度跳深条件下下肢刚度与爆发力的关系[D]. 北京:北京体育大学, 2013. XU L Y. The relationship between lower extremity stiffness and explosive force under the condition of the different height in drop jumping[D]. Beijing: Beijing Sport University, 2013. (in Chinese) [20] OATIS C A. The use of a mechanical model to describe the stiffness and damping characteristics of the knee joint in healthy adults[J]. Physical Therapy, 1993, 73(11):740-749. [21] 刘宇, 魏勇. 运动科学领域的下肢刚度研究[J]. 上海体育学院学报, 2008, 32(5):31-35. LIU Y, WEI Y. Research on lower limbs stiffness in field of sports science[J]. Journal of Shanghai University of Sport, 2008, 32(5):31-35. (in Chinese) [22] 巴凯先, 孔祥东, 朱琦歆, 等. 液压驱动单元基于位置/力的阻抗控制机理分析与试验研究[J]. 机械工程学报, 2017, 53(12):172-185. BA K X, KONG X D, ZHU Q X, et al. Position/force-based impedance control and their experimental research on hydraulic drive unit [J]. Journal of Mechanical Engineering, 2017, 53(12): 172-185. (in Chinese) [23] KONG X D, ZHAO H L, LI B W F, et al. Analysis of position-based impedance control method and the composition of system dynamic compliance[C]∥ Proceedings of IEEE International Conference on Aircraft Utility Systems. Beijing, China: IEEE, 2016: 454-459. [24] 王庆东. 基于导纳控制的非对称下肢外骨骼机器人控制研究[D].沈阳:东北大学,2017. WANG Q D. Research on asymmetric lower limb external skeleton based on admittance control[D]. Shenyang: Northeastern University, 2017. (in Chinese)
第41卷第6期2020 年6月 兵工学报ACTA ARMAMENTARII Vol.41No.6Jun.2020
|