[1] 林春生,龚沈光. 舰船物理场[M]. 北京:兵器工业出版社,2007:233-248. LIN C S, GONG S G. Physical field of warships[M]. Beijing: Publishing House of Ordnance Industry,2007: 233-248. (in Chinese) [2] 姜润翔,史建伟,龚沈光. 舰船极低频电场信号特性分析[J]. 海军工程大学学报,2014,26(1):5-8. JIANG R X, SHI J W, GONG S G. Characteristic of ship's extremely low frequency electrical field study [J]. Journal of Naval University of Engineering,2014,26(1):5-8. (in Chinese) [3] FABIO S. Advanced mine capability[R]. Ghedi, BS, Italy:RWM Italia S.p.A.,2012:1-65. [4] MOLINA A, SANCHEZ-GARCIA A, RODRIGO F J. The advanced multi-influence exercise mine system [J]. Sea Techno-logy, 2007, 48(11): 10-14. [5] HUBBARD J C, BROOKS S H, TORRRANCE B C. Practical measures for reduction and management of the electro-magnetic signatures of in service surface ships and submarines[C]∥Proceedings of Underwater Defence Technology Conference. London,UK: Royal Navy,1996: 64-65. [6] HARRISO A S, HUBBARD J C. An underwater electric potential (static electric) signature management toolkit for the non-specialist[C]∥ Proceedings of Underwater Defence Technology Conference. London, UK: Royal Navy,1994:45-48. [7] HOITHAM P, JEFFREY I, BROOKING B, et al. Electromagnetic signature modeling and reduction[C]∥Proceedings of Underwater Defence Technology Europe'2001. Hamburg, Germany:NATO, 2001:97-100. [8] 姜润翔, 张伽伟, 陈新刚. 舰船轴频电场产生机理及控制技术[J]. 国防科技大学学报, 2019, 41(6):111-117. JIANG R X, ZHANG J W, CHEN X G. Ship's shaft-related electric field mechanism of production and countermeasure technology[J]. Journal of National University of Defense Technology,2019, 41(6):111-117. (in Chinese) [9] 姜润翔,林春生,龚沈光.基于点电荷模型的舰船静电场反演算法研究[J].兵工学报,2015,36(3):545-551. JIANG R X, LIN C S, GONG S G. Electrostatic electric field inversion method for ship based on point charge source model[J]. Acta Armamentarii, 2015,36(3):545-551. (in Chinese) [10] 姜润翔,张伽伟,林春生.基于点电荷模型的腐蚀相关静电场快速预测方法研究[J].兵工学报,2017,38(4):375-743. JIANG R X, ZHANG J W, LIN C S. Study of quick prediction method for ship corrosion related static electric field based on point charge source model[J]. Acta Armamentarii, 2017,38(4): 735-743. (in Chinese) [11] YU P, CHENG J F, JIANG R X. Research of ship's stealth methods in static electric field[C]∥Proceedings of Advances in Materials, Machinery, Electrical Engineering. Tianjing, China: Atlantis Press, 2017:244-248. [12] 喻鹏.舰船静电场隐身技术研究[D].武汉:海军工程大学,2017. YU P. Study on stealth technology of ship's static electric field[D]. Wuhan: Naval University of Engineering, 2017. (in Chinese) [13] 常明, 姜润翔, 张伽伟, 等. 基于主动式轴接地系统的舰船轴频电场抵消方法[J]. 海军工程大学学报, 2015, 27(1):64-67. CHANG M, JIANG R X, ZHANG J W, et al. Characteristic of ship's extremely low frequency electrical field study[J]. Journal of Naval University of Engineering, 2015, 27(1):64-67. (in Chinese) [14] 张海鹏, 陈新刚, 敖晨阳, 等. 舰船轴频电场的负电势补偿抑制方法研究[J]. 电力电子技术, 2015, 49(2):24-27. ZHANG H P, CHEN X G, AO C Y, et al. Research on the cancellation method of compensated negative potential for ship shaft-rate electric field[J]. Power Electronics, 2015, 49(2):24-27. (in Chinese) [15] MARIUS B. Variability of ship's electric signature during the RIMPASS trial: DRDC-RDDC-2015-R272[R]. Canada: Defence Research and Development Canada,2015:1-26.
第41卷第4期2020 年4月 兵工学报ACTA ARMAMENTARII Vol.41No.4Apr.2020
|