欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2020, Vol. 41 ›› Issue (4): 720-729.doi: 10.3969/j.issn.1000-1093.2020.04.011

• 论文 • 上一篇    下一篇

旋成体高速入水可压缩性影响研究

李国良1, 尤天庆2, 孔德才2, 李静1, 周伟江1   

  1. (1.中国航天空气动力技术研究院 一所, 北京 100074;2.北京宇航系统工程研究所, 北京 100076)
  • 收稿日期:2019-06-27 修回日期:2019-06-27 上线日期:2020-06-02
  • 通讯作者: 李静(1990—),女,工程师,硕士 E-mail:lijing_li2010@163.com
  • 作者简介:李国良(1978—),男,高级工程师,博士。E-mail:liboyang0929@sina.com;
    尤天庆(1984—),男,高级工程师,博士。E-mail:ytqzz@126.com;
    孔德才(1983—),男,高级工程师,硕士。E-mail:bigblue_bit@msn.com;
    周伟江(1962—),男,研究员,博士。E-mail:zwj7349@sohu.com
  • 基金资助:
    装备发展部共用技术基金项目(41406040402);国家自然科学基金项目(11772317)

Effect of Fluid Compressibility on High-speed Water-entry of Revolutionary Body

LI Guoliang1, YOU Tianqing2, KONG Decai2,LI Jing1,ZHOU Weijiang1   

  1. (1.The First Research Institute, China Academy of Aerospace Aerodynamics, Beijing 100074, China;2.Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China)
  • Received:2019-06-27 Revised:2019-06-27 Online:2020-06-02

摘要: 针对目前高速(≥100 m/s)跨水-气体界面多相流数值模拟中空化效应和水介质可压缩性影响等问题,建立一套高速入水数值模拟方法。以旋成体为计算模型,采用剪应力传递(SST) k-ω、 标准(Standard)k-ε、重整化群(RNG)k-ε及可实现(Realizable) k-ε 4种湍流模型进行数值模拟,得到速度衰减与入水深度随时间变化的结果及入水1 ms时的空泡形态,并与理论解比较。基于SST k-ω湍流模型与文献[15,17]实验开展对比研究,选取入水速度50 m/s、100 m/s、200 m/s、400 m/s、800 m/s进行计算。研究结果表明:采用SST k-ω湍流模型的数值模拟结果与理论解一致性最好,入水速度衰减、空泡发展与实验结果基本一致,证明该方法的有效性;在入水速度≤100 m/s时, 液体可压缩性对入水冲击载荷基本没有影响;在入水速度≥200 m/s时,随着入水速度增加,液体可压缩性对入水冲击载荷影响越大,会弱化入水冲击载荷及延缓最大载荷出现的时间;在考虑液体可压缩性时,空泡形态有收缩现象;入水速度越大,入水过程速度衰减越快,加速度值在入水初期较大;在计算模型周围被超空泡包裹的航行阶段,随着入水深度增加,加速度逐渐减小,加速度的变化逐渐平缓。

关键词: 旋成体, 高速入水, 空化流, 可压缩液体

Abstract: A set of simulation methods for high-speed (≥100 m/s) water-entry is developed for both cavitation and compressible effects in the numerical simulation of multi-phase flow at water-air interface. The revolutionary body is used as a computing model, and the turbulence models, including SST k-ω, Standard k-ε, RNG k-ε, and Realizable k-ε, are utilized for simulation. The change results of velocity damping and water-entry depth with time are obtained. The cavitation configuration at 1 ms is outlined. The simulated results are compared with the theoretical solutions, and the simulated results by SST k-ω agree with the theoretical solutions. The set of methods is used for the reference experiments in Refs. [15] and [17]. Compared with experimental results, the set of methods is validated in terms of velocity damping and cavitation development. Some different water-entry velocities, including 50 m/s, 100 m/s, 200 m/s, 400 m/s and 800 m/s, are regarded as initial condition to be computed. The compressibility of water has no effect on the water-entry impact basically when water-entry velocity is less than 100 m/s. Beyond that, the compressibility of water has much effect on the water-entry impact, which can lessen the impact and delay the time of peak value. In addition, the cavitation configuration has shrunk, especially in the water-air area. With the increase in water-entry velocity, the velocity damping becomes quicker. The acceleration is relatively higher in the beginning of water-entry. During the period of the model covered by supercavitation, the acceleration gradually declines and changes gently with the increase in water-entry depth. Key

Key words: revolutionarybody, high-speedwater-entry, cavitationflow, compressiblewater

中图分类号: