欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2017, Vol. 38 ›› Issue (8): 1649-1657.doi: 10.3969/j.issn.1000-1093.2017.08.024

• 论文 • 上一篇    下一篇

复杂装备轴承多重故障的线性判别分析与反向传播神经网络协作诊断方法

黄大荣1,2, 陈长沙1, 孙国玺2, 赵玲1, 米波1   

  1. (1.重庆交通大学 信息科学与工程学院, 重庆 400074;2.广东石油化工学院 广东省石化装备故障诊断重点实验室, 广东 茂名 525000)
  • 收稿日期:2016-12-02 修回日期:2016-12-02 上线日期:2017-10-10
  • 作者简介:黄大荣(1978—),男,教授,硕士生导师。E-mail:hcx1978@163.com
  • 基金资助:
    国家自然科学基金项目(61663008、61573076、61473094、61304104、61004118);教育部留学归国人员科研启动基金项目(2015-49);重庆市高等学校优秀人才支持计划项目(2014-18);广东省石化装备故障诊断重点实验室开放式基金项目(GDUPKLAB201501、GDUPKLAB201604);重庆市研究生教育教学改革研究重点项目(yjg152011);重庆市高等教育学会2015—2016高等教育科学研究课题项目(CQGJ15010C)

Linear Discriminant Analysis and Back Propagation Neural Network Cooperative Diagnosis Method for Multiple Faults of ComplexEquipment Bearings

HUANG Da-rong1,2, CHEN Chang-sha1, SUN Guo-xi2, ZHAO Ling1,MI Bo1   

  1. (1.College of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China;2.Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong , China)
  • Received:2016-12-02 Revised:2016-12-02 Online:2017-10-10

摘要: 由于复杂装备运行工作环境恶劣,导致其轴承多重故障诊断的准确率不高,为此提出一种 基于线性判别分析(LDA)与反向传播(BP)神经网络协作下复杂装备轴承数据驱动的多重故障诊断方法。将无量纲指标作为轴承多重故障数据的反映指标,利用LDA对轴承多重故障的无量纲指标数据进行线性映射降维处理;通过拉格朗日极值法获得最佳投影向量,沿着该方向将轴承多重故障数据投影到类别最易区分的方向;将经投影处理后的样本作为BP神经网络的输入样本,通过训练测试网络,实现轴承多重故障的预测分类。对某型装备大型旋转机械机组进行仿真实验,验证了所提方法能够有效对轴承多重故障进行降维映射,并且能较好地实现多重故障分类诊断,具有良好的有效性和实用性。

关键词: 机械学, 轴承多重故障诊断, 拉格朗日极值法, 线性判别分析, 反向传播神经网络

Abstract: The fault diagnosis accuracy of bearing for complex equipment is not high due to the structural complexity of complex equipment and the poor working environment. A method of multiple bearing fault diagnosis based on linear discriminant analysis (LDA) and BP neural network is presented. A linear discriminant analysis is utilized for the linear dimension reduction of the dimensionless bearing multiple fault index, which is taken as an indicator of fault data. Lagrange extremum method is used to obtain an optimal projection vector. The bearing multiple fault data is projected on a category most likely to distinguished direction. The projected samples are used as the input samples of BP neural network and the test network. The simulation experiment of a certain large rotating machinery units shows that the proposed method can effectively reduce the dimensional mapping of multi-fault, achieve better classification, and has good validity and practicability. Key

Key words: mechanics, bearingmultiplefaultdiagnosis, Lagrangianextremummethod, lineardiscriminantanalysis, BPneuralnetwork

中图分类号: