欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于改进SDU-YOLOv8的军事飞机目标检测算法

赵海丽1*,包大泱1,张从豪1,刘鹏1,王彩霞1,景文博2   

  1. 1.长春理工大学 电子信息工程学院;2.长春理工大学 光电工程学院
  • 收稿日期:2025-04-17 修回日期:2025-06-30
  • 基金资助:
    吉林省科技厅科技攻关项目(20210201092GX)

Military Aircraft Object Detection Algorithm Based on Improved SDU-YOLOv8

ZHAO Haili1*,BAO Dayang1,ZHANG Conghao1,LIU Peng1,WANG Caixia1,JING Wenbo2   

  1. 1.School of Electronic Information Engineering, Changchun University of Technology; 2.School of Optoelectronic Engineering, Changchun University of Technology
  • Received:2025-04-17 Revised:2025-06-30

摘要: 针对空天背景下军事飞机目标检测中存在的低对比度、小尺寸及形态多变导致的漏检率高、特征交互不足等问题,提出基于YOLOv8改进的SDU-YOLOv8网络。通过构建SSGBlock深度特征提取模块、动态可学习的Dy-RepGFPN特征融合网络以及参数共享的UCDN-Head检测头,实现特征提取、融合与检测头的协同优化。在自建军事飞机数据集上的实验结果表明,SDU-YOLOv8网络较基准YOLOv8的mAP@0.5提升2.5%,达到95.7%,参数量减少6.7%,计算量降低9.9%,在小尺寸、低对比度及形变目标的检测鲁棒性显著增强;新方法在保持轻量化的同时实现了检测精度与效率的均衡优化,为空天侦察场景下的军事飞机检测提供了高效解决方案。

关键词: 军事飞机目标检测, YOLOv8, 深度特征提取, 动态上采样, 统一参数化

Abstract: Aiming at the problems of high leakage rate and insufficient feature interaction due to low contrast, small size and variable morphology in military aircraft target detection in the air-sky context, this study proposes an improved SDU-YOLOv8 network based on YOLOv8. The synergistic optimization of feature extraction, fusion and detection head is achieved by constructing SSGBlock deep feature extraction module, dynamically learnable Dy-RepGFPN feature fusion network, and parameter-sharing UCDN-Head detection head. Through experiments on a self-constructed military aircraft dataset, the SDU-YOLOv8 network outperforms the benchmark YOLOv8 mAP@0.5 Improved by 2.5%, 6.7% reduction in the amount of parameters, 9.9% reduction in the amount of computation, and significant enhancement in the detection robustness of small-size, low-contrast and deformation targets. The experimental results show that the proposed method achieves a balanced optimization of detection accuracy and efficiency while maintaining lightweight, providing an efficient solution for military aircraft detection in air and space reconnaissance scenarios.

Key words: military aircraft target detection ;YOLOv8, deep feature extraction, dynamic upsampling, unified parameterization

中图分类号: