• • 下一篇
赵海丽1*,包大泱1,张从豪1,刘鹏1,王彩霞1,景文博2
ZHAO Haili1*,BAO Dayang1,ZHANG Conghao1,LIU Peng1,WANG Caixia1,JING Wenbo2
摘要: 针对空天背景下军事飞机目标检测中存在的低对比度、小尺寸及形态多变导致的漏检率高、特征交互不足等问题,提出基于YOLOv8改进的SDU-YOLOv8网络。通过构建SSGBlock深度特征提取模块、动态可学习的Dy-RepGFPN特征融合网络以及参数共享的UCDN-Head检测头,实现特征提取、融合与检测头的协同优化。在自建军事飞机数据集上的实验结果表明,SDU-YOLOv8网络较基准YOLOv8的mAP@0.5提升2.5%,达到95.7%,参数量减少6.7%,计算量降低9.9%,在小尺寸、低对比度及形变目标的检测鲁棒性显著增强;新方法在保持轻量化的同时实现了检测精度与效率的均衡优化,为空天侦察场景下的军事飞机检测提供了高效解决方案。
中图分类号: