欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于IGWO-1DCNN的高分辨一维距离像目标识别方法

陈世宝1,韩嘉轩2,张慧雯2,吴钇达2,王彩云2*   

  1. 1.潍坊科技学院 计算机学院; 2.南京航空航天大学 航天学院
  • 收稿日期:2024-12-13 修回日期:2025-05-06
  • 基金资助:
    国家自然科学基金项目(61301211);国家留学基金项目(201906835017)

High Resolution Range Profile Target Recognition Based on IGWO-1DCNN

CHEN Shibao1, HAN Jiaxuan2, ZHANG Huiwen2, WU Yida2, WANG Caiyun2*   

  1. 1. School of Computer Science, Weifang University of Science and Technology; 2. Nanjing University of Aeronautics and Astronautics
  • Received:2024-12-13 Revised:2025-05-06

摘要: 高分辨一维距离像(High Resolution Range Profile, HRRP)可提供丰富的目标细节信息,在雷达目标识别领域得到了广泛的应用。由于受环境噪声干扰、大气辐射及突防措施等影响,传统的弹道中段目标HRRP识别方法的准确率较低,而智能优化算法在提取目标局部特征时又有参数过多而导致人工调参困难。针对此问题,提出一种基于改进灰狼优化一维卷积神经网络(Improved Grey Wolf Optimizer and One Dimensional Convolutional Neural Network, IGWO-1DCNN)的弹道目标HRRP识别方法。该方法通过构建并改进一维卷积神经网络,对宽带雷达目标HRRP样本进行特征提取;引入改进的灰狼优化算法加快模型的收敛速度,提升模型的识别性能;使用支持向量机作为网络的分类器进行弹道目标分类识别。实验结果表明,与其他现有方法对比,新方法实现了神经网络参数的自动寻优,减轻了人工训练的负担;弹道HRRP目标识别的准确率较高,而且鲁棒性较强。

关键词: 雷达目标识别, 高分辨一维距离像, 一维卷积神经网络, 灰狼优化算法

Abstract: As providing the detailed information of target’s features, High resolution range profile (HRRP) is predominantly employed in the field of wideband radar target recognition. The traditional method of Radar HRRP recognition of ballistic midcourse targets is hindered by the influence of environmental noise interference, atmospheric radiation and penetration strategies, resulting in low accuracy. Furthermore, the intelligent optimization algorithm faces the challenge of an extensive number of parameters, coupled with manual parameter adjustment tuning to extract local features of the target. Aiming at this issue, a high resolution range profile recognition method for ballistic targets based on the improved grey wolf optimizer and one-dimensional convolutional neural network (IGWO-1DCNN) is proposed. The method entails the construction of an improved 1D convolutional neural network for the feature extraction from HRRP samples of wideband radar targets. This is achieved through the incorporation of the improved grey wolf optimizer (IGWO) algorithm, which serves to accelerate the convergence speed of the model and enhance its recognition performance. The support vector machine (SVM) is used as the classifier to facilitate the recognition processes. The experimental results demonstrate that this novel method is capable of accurately identifying the ballistic targets, automatically optimizing parameters of neural network, and reducing the burden of manual training and exhibiting higher robustness.

Key words: radar target recognition, high resolution range profiles, 1D convolutional neural network, grey wolf optimizer

中图分类号: